- 30. Show: If $\sum_{k=0}^{\infty} a_k$ is absolutely convergent, then $\sum_{k=0}^{\infty} a_k \sin(kx)$ and $\sum_{k=0}^{\infty} a_k \cos(kx)$ converge uniformly on \mathbb{R} .
- 31. Suppose that $\sum_{k=0}^{\infty} f_k$ converges uniformly, that $\{g_k(x)\}$ is a monotone sequence for each x, and that the sequence $\{\|g_k\|_{\infty}\}$ is bounded. Show that $\sum_{k=0}^{\infty} f_k g_k$ is uniformly convergent.
- 32. Prove that $f(x) = \sum_{k=0}^{\infty} a_k x^k$ converges uniformly on [0,1] provided $\sum_{k=0}^{\infty} a_k$ converges. Show that in this case $\lim_{x\to 1^-} f(x) = \sum_{k=0}^{\infty} a_k$.
- 33. Suppose that $\{\|\sum_{k=1}^n f_k\|_{\infty}\}$ is bounded, that $\{g_k(x)\}$ is monotone for each x, and that $g_k \to 0$ uniformly. Show that $\sum_{k=0}^{\infty} f_k g_k$ is uniformly convergent.
- 34. Prove that $g_1 g_2 + g_3 \dots$ converges uniformly provided $g_1 \ge g_2 \ge \dots$ and $g_k \to 0$ uniformly.
- 35. Let $F_n = \sum_{k=1}^n f_k$. Prove that $\sum_{k=1}^\infty f_k g_k$ converges uniformly provided $\{F_n g_{n+1}\}$ and $\sum_{k=1}^\infty F_k (g_k g_{k+1})$ converge uniformly.
- 36. Decide whether the following spaces are Banach spaces.
 - (a) \mathbb{R} with norm ||x|| = |x|;
 - (b) C[0, 1] with norm $||x|| = \int_0^1 |x(t)| dt$;
 - (c) the space of sequences that are 0 eventually with the maximal element of a sequence as its norm.
- 37. Suppose that $\{f_n\}$ is a monotonic function sequence that converges pointwise on [a, b] to f. If f and every f_n are continuous on [a, b], show that $\{f_n\}$ converges uniformly on [a, b] to f.
- 38. Find examples that show that in each of Theorems 2.8, 2.12, and 2.14 the uniform convergence is not a necessary condition for the claims of the theorems to hold.