- 39. Show that each compact subset of \mathbb{R} contains a countable dense subset.
- 40. Suppose \mathcal{F} is a family of functions that are Lipschitz continuous with the same Lipschitz constant. Show that \mathcal{F} is equicontinuous.
- 41. Suppose \mathcal{F} is a family of differentiable functions on [a, b] such that the derivatives are uniformly bounded. Show that \mathcal{F} is equicontinuous.
- 42. Suppose \mathcal{F} is a family of uniformly bounded and Riemann integrable functions on [a, b]. Show that the family of functions defined by $\int_a^x f(t) dt$, where $f \in \mathcal{F}$, is equicontinuous.
- 43. For a function f defined on [0,1] we introduce the nth Bernstein polynomial as

$$B_n(f;x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}.$$

Show the following:

- (a) $B_n(1;x) \equiv 1;$
- (b) $B_n(x; x) = x;$
- (c) $B_n(x^2; x) = x^2 + \frac{x(1-x)}{n}$.
- 44. Show that the polynomials in the "Weierstraß Approximation Theorem" can be chosen as Bernstein polynomials.
- 45. Find the third Bernstein polynomial for $\sin(\pi x/2)$.
- 46. Find the fourth Bernstein polynomial for \sqrt{x} .
- 47. Show that the "Weierstraß Approximation Theorem" does not hold if [a, b] is replaced by (a, b).