- 48. Evaluate $\sum_{k=1}^{\infty} 1/(k2^k)$ by integrating the geometric series.
- 49. Evaluate $\sum_{k=1}^{\infty} k/2^k$ by differentiating the geometric series.
- 50. Show that f has derivatives of all orders at x=0 but is not analytic:

$$f(x) = \begin{cases} \exp(-1/x^2) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

- 51. Use Taylor expansion of $\log(1+x)$ to find $\sum_{n=0}^{\infty} (-1)^n/(n+1)$.
- 52. Use Taylor expansion of $\arctan(x)$ to find $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \frac{1}{9} \dots$
- 53. Prove the following Tauberian Theorem: Suppose $f(x) = \sum_{n=0}^{\infty} a_n x^n$ converges for |x| < 1 and $\lim_{x \to 1} f(x) = s$. If $na_n \to 0$ as $n \to \infty$, then $\sum_{n=0}^{\infty} a_n$ converges and is equal to s.
- 54. Show that $E(x) \ge 1 + x$ for all $x \in \mathbb{R}$.
- 55. Work on problems 4, 5, and 6 of Chapter 8 in the textbook.