- 69. Let \mathcal{A} be a σ -algebra. Show:
 - (a) $\emptyset \in \mathcal{A}$;
 - (b) if $A_k \in \mathcal{A}$ for all $k \in \mathbb{N}$, then $\cap_{k \in \mathbb{N}} \in \mathcal{A}$;
 - (c) if $A, B \in \mathcal{A}$, then $A B \in \mathcal{A}$.
- 70. Let $X \neq \emptyset$ and Ω be some index set. Suppose that $\mathcal{A}_{\omega} \subset \mathcal{P}(X)$ are σ -algebras for each $\omega \in \Omega$. Show that $\cap_{\omega \in \Omega} \mathcal{A}_{\omega}$ is also a σ -algebra.
- 71. Let $X \neq \emptyset$ and $M \subset \mathcal{P}(X)$. Show that there exists a smallest σ -algebra among all σ -algebras that contain M.
- 72. Let $X = \mathbb{R}$ and $M = \{(-\infty, a] : a \in \mathbb{R}\}$. Show that the smallest σ -algebra containing M from the previous problem contains also all of the following sets:
 - (a) All intervals of the form (a, ∞) ;
 - (b) all half-open intervals;
 - (c) all open subsets of \mathbb{R} ;
 - (d) all closed subsets of \mathbb{R} ;
 - (e) all countable unions of closed subsets of \mathbb{R} (" F_{σ} -sets");
 - (f) all countable intersections of open subsets of \mathbb{R} (" G_{δ} -sets").
- 73. Let $X, Y \neq \emptyset$. Prove that if \mathcal{A} is a σ -algebra on X and $f: X \to Y$ is onto, then $\{B: f^{-1}(B) \in \mathcal{A}\}$ is a σ -algebra on Y.
- 74. Let A_k , $k \in \mathbb{N}$, and A be measurable sets. Show:
 - (a) If A_k is increasing to A, then $\mu(A_k) \to \mu(A)$, $k \to \infty$.
 - (b) Let $\mu(A_1) < \infty$. If A_k is decreasing to A, then $\mu(A_k) \to \mu(A)$, $k \to \infty$.
 - (c) The second sentence of part (ii) does not need to hold if the first sentence of part (ii) is not satisfied.
- 75. Show that the Cantor set is uncountable but has Lebesgue measure zero.