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CHAPTER 1

The Riemann–Stieltjes Integral

1.1. Functions of Bounded Variation

Definition 1.1. Let a, b ∈ R with a < b. A partition P of [a, b] is a finite set of points
{x0, x1, . . . , xn} with

a = x0 < x1 < . . . < xn−1 < xn = b.

The set of all partitions of [a, b] is denoted by P = P[a, b]. If P ∈ P, then the norm of
P = {x0, x1, . . . , xn} is defined by

‖P‖ = sup
1≤i≤n

∆xi, where ∆xi = xi − xi−1, 1 ≤ i ≤ n.

Definition 1.2. Let f : [a, b]→ R be a function. We put∨
(P, f) =

n∑
k=1

|f(xk)− f(xk−1)| for P = {x0, . . . , xn} ∈ P.

The total variation of f on [a, b] is defined as

b∨
a

f = sup
P∈P

∨
(P, f).

If
∨b
a f <∞, then f is said to be of bounded variation on [a, b]. We write f ∈ BV[a, b].

Example 1.3. If f is nondecreasing on [a, b], then f ∈ BV[a, b].

Theorem 1.4. If f ′ ∈ B[a, b], then f ∈ BV[a, b].

Theorem 1.5. BV[a, b] ⊂ B[a, b].

1.2. The Total Variation Function

Lemma 1.6. BV[a, b] ⊂ BV[a, x] for all x ∈ (a, b).

Definition 1.7. For f ∈ BV[a, b] we define the total variation function vf : [a, b]→ R by

vf (x) =
x∨
a

f for all x ∈ [a, b].

Lemma 1.8. If f ∈ BV[a, b], then vf is nondecreasing on [a, b].

Lemma 1.9. If f ∈ BV[a, b], then vf − f is nondecreasing on [a, b].

Theorem 1.10. f ∈ BV[a, b] iff f = g − h with on [a, b] nondecreasing functions g and h.
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2 1. THE RIEMANN–STIELTJES INTEGRAL

1.3. Riemann–Stieltjes Sums and Integrals

Definition 1.11. Let f, g : [a, b] → R be functions. Let P = {x0, . . . , xn} ∈ P[a, b] and
ξ = (ξ1, . . . , ξn) such that

xk−1 ≤ ξk ≤ xk for all 1 ≤ k ≤ n.
Then

S(P, ξ, f, g) =
n∑
k=1

f(ξk) [g(xk)− g(xk−1)]

is called a Riemann–Stieltjes sum for f with respect to g. The function f is called Riemann–
Stieltjes integrable with respect to g over [a, b], we write f ∈ R(g), if there exists a number
J with the following property:

∀ε > 0 ∃δ > 0 ∀P ∈ P, ‖P‖ < δ : |S(P, ξ, f, g)− J | < ε

(independent of ξ). In this case we write∫ b

a

fdg = J,

and J is called the Riemann–Stieltjes integral of f with respect to g over [a, b]. The function
f is also called integrand (function) while g is called integrator (function).

Theorem 1.12 (Fundamental Inequality). If f ∈ B[a, b], g ∈ BV[a, b], and f ∈ R(g), then∣∣∣∣∣
∫ b

a

fdg

∣∣∣∣∣ ≤ ‖f‖∞
b∨
a

g,

where ‖f‖∞ = supa≤x≤b |f(x)|.

Example 1.13. If g(x) = x for all x ∈ [a, b], then f ∈ R(g) iff f ∈ R[a, b].

Example 1.14. f ∈ C[a, b] and g(x) =

{
0 if a ≤ x ≤ t
p if t < x ≤ b.

Theorem 1.15. Let f ∈ R[a, b] and g′ ∈ C[a, b]. Then

f ∈ R(g) and
∫ b

a

fdg =
∫ b

a

fg′.

Example 1.16.
∫ 1

0
xd(x2) = 2/3.

Theorem 1.17. If f ∈ R(g) ∩R(h), then

f ∈ R(g + h) and
∫
fd(g + h) =

∫
fdg +

∫
fdh.

If f ∈ R(h) and g ∈ R(h), then

f + g ∈ R(h) and
∫

(f + g)dh =
∫
fdh+

∫
gdh.

If f ∈ R(g) and ρ ∈ R, then

ρf ∈ R(g), f ∈ R(ρg), and
∫

(ρf)dg =
∫
fd(ρg) = ρ

∫
fdg.

Lemma 1.18. If f ∈ R(g) on [a, b] and if c ∈ (a, b), then f ∈ R(g) on [a, c].
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Remark 1.19. Similarly, the assumptions of Lemma 1.18 also imply f ∈ R(g) on [c, b].
Also, we make the definition∫ a

b

fdg = −
∫ b

a

fdg if a < b.

Theorem 1.20. If f ∈ R(g) on [a, b] and if c ∈ (a, b), then∫ c

a

fdg +
∫ b

c

fdg =
∫ b

a

fdg.

Theorem 1.21. If f ∈ R(g), then g ∈ R(f), and∫ b

a

fdg +
∫ b

a

gdf = f(b)g(b)− f(a)g(a).

Example 1.22.
∫ 2

−1
xd|x| = 5/2.

Theorem 1.23 (Main Existence Theorem). If f ∈ C[a, b] and g ∈ BV[a, b], then f ∈ R(g).

1.4. Nondecreasing Integrators

Throughout this section we let f ∈ B[a, b] and α be a nondecreasing function on [a, b].

Definition 1.24. If P ∈ P, then we define the lower and upper sums L and U by

L(P, f, α) =
n∑
k=1

mk [α(xk)− α(xk−1)] , mk = min
xk−1≤x≤xk

f(x)

and

U(P, f, α) =
n∑
k=1

Mk [α(xk)− α(xk−1)] , Mk = max
xk−1≤x≤xk

f(x).

We also define the lower and upper Riemann–Stieltjes integrals by∫ b

a

fdα = sup
P∈P

L(P, f, α) and
∫ b

a

fdα = inf
P∈P

U(P, f, α).

Lemma 1.25.
∫ b
a
fdα,

∫ b
a
fdα ∈ R.

Theorem 1.26. If P, P ∗ ∈ P with P ∗ ⊃ P , then

L(P, f, α) ≤ L(P ∗, f, α) and U(P, f, α) ≥ U(P ∗, f, α).

Theorem 1.27.
∫ b
a
fdα ≤

∫ b
a
fdα.

Theorem 1.28. If f ∈ C[a, b] and α is nondecreasing on [a, b], then f ∈ R(α) on [a, b].
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CHAPTER 2

Sequences and Series of Functions

2.1. Uniform Convergence

Definition 2.1. Let {fn}n∈N be funtions defined on E ⊂ R. Suppose {fn} converges for
all x ∈ E. Then f defined by

f(x) = lim
n→∞

fn(x) for x ∈ E

is called the limit function of {fn}. We also say that fn → f pointwise on E. If fn =
∑n
k=1 gk

for functions gk, k ∈ N, then f is also called the sum of the series
∑n
k=1 gk, write

∑∞
k=1 gk.

Example 2.2. (i) fn(x) = 4x+ x2/n, x ∈ R.
(ii) fn(x) = xn, x ∈ [0, 1].
(iii) fn(x) = limm→∞ [cos(n!πx)]2m, x ∈ R.
(iv) fn(x) = sin(nx)

n , x ∈ R.

(v) fn(x) =


2n2x if 0 ≤ x ≤ 1

2n

2n(1− nx) if 1
2n ≤ x ≤

1
n

0 if 1
n ≤ x ≤ 1.

Definition 2.3. We say that {fn}n∈N converges uniformly on E to a function f if

∀ε > 0 ∃N ∈ N ∀n ≥ N ∀x ∈ E : |fn(x)− f(x)| ≤ ε.

If fn =
∑n
k=1 gk, we also say that the series

∑∞
k=1 gk converges uniformly provided {fn}

converges uniformly.

Example 2.4. (i) fn(x) = xn, x ∈ [0, 1/2].
(ii) fn(x) = xn, x ∈ [0, 1].

Theorem 2.5 (Cauchy Criterion). The sequence {fn}n∈N converges uniformly on E iff

∀ε > 0 ∃N ∈ N ∀m,n ≥ N ∀x ∈ E : |fn(x)− fm(x)| ≤ ε.

Theorem 2.6 (Weierstraß M -Test). Suppose {gk}k∈N satisfies

|gk(x)| ≤Mk ∀x ∈ E ∀k ∈ N and
∞∑
k=1

Mk converges.

Then
∑∞
k=1 gk converges uniformly.

2.2. Properties of the Limit Function

Theorem 2.7. Suppose fn → f uniformly on E. Let x be a limit point of E and suppose

An = lim
t→x

fn(t) exists for all n ∈ N.

5



6 2. SEQUENCES AND SERIES OF FUNCTIONS

Then {An}n∈N converges and
lim
n→∞

An = lim
t→x

f(t).

Theorem 2.8. If fn are continuous on E for all n ∈ N and fn → f uniformly on E, then
f is continuous on E.

Corollary 2.9. If gk are continuous on E for all k ∈ N and
∑∞
k=1 gk converges unifomly

on E, then
∑∞
k=1 gk is continuous on E.

Definition 2.10. Let X be a metric space. By C(X) we denote the space of all complex-
valued, continuous, and bounded functions on X. The supnorm of f ∈ C(X) is defined
by

‖f‖∞ = sup
x∈X
|f(x)| for f ∈ C(X).

Theorem 2.11. (C(X), d(f, g) = ‖f − g‖∞) is a complete metric space.

Theorem 2.12. Let α be nondecreasing on [a, b]. Suppose fn ∈ R(α) for all n ∈ N and
fn → f uniformly on [a, b]. Then f ∈ R(α) on [a, b] and∫ b

a

fdα = lim
n→∞

∫ b

a

fn(x)dα.

Corollary 2.13. Let α be nondecreasing on [a, b]. Suppose gk ∈ R(α) on [a, b] for all k ∈ N
and

∑∞
k=1 gk converges uniformly on [a, b]. Then∫ b

a

∞∑
k=1

gkdα =
∞∑
k=1

∫ b

a

gkdα.

Theorem 2.14. Let fn be differentiable functions on [a, b] for all n ∈ N such that
{fn(x0)}n∈N converges for some x0 ∈ [a, b]. If {f ′n}n∈N converges uniformly on [a, b], then
{fn}n∈N converges uniformly on [a, b], say to f , and

f ′(x) = lim
n→∞

f ′n(x) for all x ∈ [a, b].

Corollary 2.15. Suppose gk are differentiable on [a, b] for all k ∈ N and
∑∞
k=1 g

′
k is

uniformly convergent on [a, b]. If
∑∞
k=1 gk(x0) converges for some point x0 ∈ [a, b], then∑∞

k=1 gk is uniformly convergent on [a, b], and( ∞∑
k=1

gk

)′
=
∞∑
k=1

g′k.

2.3. Equicontinuous Families of Functions

Example 2.16. fn(x) = x2

x2+(1−nx)2 , 0 ≤ x ≤ 1, n ∈ N.

Definition 2.17. A family F of functions defined on E is said to be equicontinuous on E if

∀ε > 0 ∃δ > 0 (∀x, y ∈ E : |x− y| < δ) ∀f ∈ F : |f(x)− f(y)| < ε.

Theorem 2.18. Suppose K is compact, fn ∈ C(K) for all n ∈ N, and {fn}n∈N converges
uniformly on K. Then the family F = {fn : n ∈ N} is equicontinuous.

Definition 2.19. The sequence {fn}n∈N is called pointwise bounded if there exists a function
φ such that |fn(x)| < φ(x) for all n ∈ N. It is called uniformly bounded if there exists a
number M such that ‖fn‖∞ ≤M for all n ∈ N.



2.4. WEIERSTRASS’ APPROXIMATION THEOREM 7

Theorem 2.20. A pointwise bounded sequence {fn}n∈N on a countable set E has a subse-
quence {fnk}k∈N such that {fnk(x)}k∈N converges for all x ∈ E.

Theorem 2.21 (Arzelà–Ascoli). Suppose K is compact and {fn}n∈N ⊂ C(K) is point-
wise bounded and equicontinuous. Then {fn} is uniformly bounded on K and contains a
subsequence which is uniformly convergent on K.

2.4. Weierstraß’ Approximation Theorem

Theorem 2.22 (Weierstraß’ Approximation Theorem). Let f ∈ C[a, b]. Then there exists
a sequence of polynomials {Pn}n∈N with

Pn → f uniformly on [a, b].
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CHAPTER 3

Some Special Functions

3.1. Power Series

Definition 3.1. A function f is said to be represented by a power series around a provided

f(x) =
∞∑
n=0

cn(x− a)n for some cn, n ∈ N0.

Such an f is called analytic.

Theorem 3.2. If
∞∑
n=0

cnx
n converges for |x| < R,

then it converges uniformly on [−R+ ε,R− ε] for all ε > 0. Also, f defined by

f(x) =
∞∑
n=0

cnx
n for |x| < R

is continuous and differentiable on (−R,R) with

f ′(x) =
∞∑
n=0

(n+ 1)cn+1x
n for |x| < R.

Corollary 3.3. Under the hypotheses of Theorem 3.2, f (n) exists for all n ∈ N and

f (k)(x) =
∞∑
n=k

n(n− 1) . . . (n− k + 1)cnxn−k

holds on (−R,R). In particular,

f (n)(0) = n!cn for all n ∈ N0.

Theorem 3.4 (Abel’s Theorem). Suppose
∑∞
n=0 cn converges. Put

f(x) =
∞∑
n=0

cnx
n for x ∈ (−1, 1).

Then

lim
x→1−

f(x) =
∞∑
n=0

cn.

Theorem 3.5. Suppose
∑∞
n=0 an,

∑∞
n=0 bn, and

∑∞
n=0 cn converge to A, B, and C, where

cn =
∑n
k=0 akbn−k. Then C = AB.

9



10 3. SOME SPECIAL FUNCTIONS

Theorem 3.6. Given a double sequence {aij}i,j∈N. If
∞∑
j=1

|aij | = bi for all i ∈ N and
∞∑
i=1

bi converges,

then
∞∑
i=1

∞∑
j=1

aij =
∞∑
j=1

∞∑
i=1

aij .

Theorem 3.7 (Taylor’s Theorem). Suppose
∑∞
n=0 cnx

n converges in (−R,R) and put
f(x) =

∑∞
n=0 cnx

n. Then

f(x) =
∞∑
n=0

f (n)(a)
n!

(x− a)n for |x− a| < R− |a|.

3.2. Exponential, Logarithmic, and Trigonometric Functions

Definition 3.8. We define the exponential function by

E(z) =
∞∑
k=0

zk

k!
for all z ∈ C.

Remark 3.9. In this remark, some properties of the exponential function are discussed.

Definition 3.10. We define the trigonometric functions by

C(x) =
E(ix) + E(−ix)

2
and S(x) =

E(ix)− E(−ix)
2i

.

Remark 3.11. In this remark, some properties of trigonometric functions are discussed.

3.3. Fourier Series

Definition 3.12. A trigonometric polynomial is a sum

f(x) = a0 +
N∑
n=1

(an cos(nx) + bn sin(nx)) , where ak, bk ∈ C.

A trigonometric series is a series

f(x) = a0 +
∞∑
n=1

(an cos(nx) + bn sin(nx)) .

Remark 3.13. In this remark, some properties of trigonometric series are discussed.

Definition 3.14. A sequence {φn}n∈N is called an orthogonal system of functions on [a, b]
if

〈φn, φm〉 :=
∫ b

a

φn(x)φm(x)dx = 0 for all m 6= n.

If, in addition
‖φn‖22 := 〈φn, φn〉 = 1 for all n ∈ N,

then {φn} is called orthonormal on [a, b]. If {φn} is orthonormal on [a, b], then

cn = 〈f, φn〉 for all n ∈ N
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are called the Fourier coefficients of a function f relative to {φn}, and

f(x) ∼
∞∑
n=1

cnφn(x)

is called the Fourier series of f .

Theorem 3.15. Let {φn} be orthonormal on [a, b]. Let

sn(f ;x) := sn(x) :=
n∑

m=1

cmφm(x), where f(x) ∼
∞∑
m=1

cmφm(x),

and put

tn(x) =
n∑

m=1

γmφm(x) with γm ∈ C.

Then
‖f − sn‖22 ≤ ‖f − tn‖22

with equality if γm = cm for all m ∈ N.

Theorem 3.16 (Bessel’s Inequality). If {φn} is orthonormal on [a, b] and if f(x) ∼∑∞
n=1 cnφn(x), then

∞∑
n=1

|cn|2 ≤ ‖f‖22.

In particular, limn→∞ cn = 0.

Definition 3.17. The Dirichlet kernel is defined by

DN (x) =
N∑

n=−N
einx for all x ∈ R.

Remark 3.18. In this remark, some properties of the Dirichlet kernel are discussed.

Theorem 3.19 (Localization Theorem). If, for some x ∈ R, there exist δ > 0 and M <∞
with

|f(x+ t)− f(x)| ≤M |t| for all t ∈ (−δ, δ),
then

lim
N→∞

sN (f ;x) = f(x).

Corollary 3.20. If f(x) = 0 for all x in some interval J , then sN (f ;x) → 0 as N → ∞
for all x ∈ J .

Theorem 3.21 (Parseval’s Formula). If f and g have period 2π and are Riemann integrable,

f(x) ∼
∞∑

n=−∞
cne

inx and g(x) ∼
∞∑

n=−∞
γne

inx,

then
1

2π

∫ π

−π
f(x)g(x)dx =

∞∑
n=−∞

cnγn,
1

2π

∫ π

−π
|f(x)|2dx =

∞∑
n=−∞

|cn|2

and

lim
N→∞

1
2π

∫ ∞
−∞
|f(x)− sN (f ;x)|2 dx = 0.
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3.4. The Gamma Function

Definition 3.22. For x ∈ (0,∞), we define the Gamma function as

Γ(x) =
∫ ∞

0

tx−1e−tdt.

Theorem 3.23. The Gamma function satisfies the following.

(i) Γ(x+ 1) = xΓ(x) for all x ∈ (0,∞);
(ii) Γ(n+ 1) = n! for all n ∈ N;
(iii) log Γ is convex on (0,∞).

Theorem 3.24. If f is a positive function on (0,∞) such that f(x + 1) = xf(x) for all
x ∈ (0,∞), f(1) = 1, log f is convex, then f(x) = Γ(x) for all x ∈ (0,∞).

Theorem 3.25. We have

Γ(x) = lim
n→∞

n!nx

x(x+ 1) · . . . · (x+ n)
.

Definition 3.26. For x > 0 and y > 0, we define the Beta function by

B(x, y) =
∫ 1

0

tx−1(1− t)y−1dt.

Theorem 3.27. If x > 0 and y > 0, then

B(x, y) =
Γ(x)Γ(y)
Γ(x+ y)

.

Example 3.28. Γ(1/2) =
√
π and

∫∞
−∞ e−s

2
ds =

√
π.

Theorem 3.29 (Stirling’s Formula). We have

lim
x→∞

Γ(x+ 1)(
x
e

)x√2πx
= 1.



CHAPTER 4

The Lebesgue Integral

4.1. The Lebesgue Measure

Example 4.1. In this example, the method of the Lebesgue integral is discussed.

Definition 4.2. Let a =


a1

...

aN

 , b =


b1

...

bN

 ∈ R
N . We write a ≤ b if ai ≤ bi for all

1 ≤ i ≤ N . The set [a, b] = {x ∈ RN : a ≤ x ≤ b} is called a closed interval. The volume of
I = [a, b] is defined by

|I| =
N∏
i=1

(bi − ai).

Similarly we define intervals (a, b], [a, b), and (a, b), and their volumes are defined to be
|[a, b]|, too.

Lemma 4.3. If I, Ik, Jk denote intervals in RN , then

(i) I ⊂ J =⇒ |I| ≤ |J |;
(ii) I =

⊎n
j=1 Ij =⇒ |I| =

∑n
j=1 |Ij |;

(iii) I ⊂
⋃n
j=1 Jj =⇒ |I| ≤

∑n
j=1 |Jj |.

Definition 4.4. We define the outer measure of any set A ⊂ RN by

µ∗(A) = inf


∞∑
j=1

|Ij | : A ⊂
∞⋃
j=1

Ij and Ij are closed intervals for all j ∈ N

 .

Example 4.5. For A = {a} we have µ∗(A) = 0.

Lemma 4.6. The outer measure µ∗ is

(i) monotone: A ⊂ B =⇒ µ∗(A) ≤ µ∗(B);
(ii) subadditive: µ∗ (

⋃∞
k=1Ak) ≤

∑∞
k=1 µ

∗(Ak).

Example 4.7. Each countable set C has µ∗(C) = 0.

Lemma 4.8. If I is an interval, then µ∗(I) = |I|.

Lemma 4.9. (i) If d(A,B) > 0, then µ∗(A ∪B) = µ∗(A) + µ∗(B);
(ii) if Ak ⊂ Ik and {Iok}k∈N are pairwise disjoint, then µ∗ (

⋃∞
k=1Ak) =

∑∞
k=1 µ

∗(Ak).

Theorem 4.10. We have

∀A ⊂ RN ∀ε > 0 ∃O ⊃ A : O open and µ∗(O) < µ∗(A) + ε.

13



14 4. THE LEBESGUE INTEGRAL

Definition 4.11. A set A ⊂ RN is called Lebesgue measurable (or L-measurable) if

∀ε > 0 ∃O ⊃ A : O open and µ∗(O \A) ≤ ε.
If A is L-measurable, then µ(A) = µ∗(A) is called its L-measure.

Theorem 4.12. The countable union of L-measurable sets is L-measurable.

Theorem 4.13 (Examples of L-measurable Sets). Open, compact, closed, and sets with
outer measure zero are L-measurable.

Theorem 4.14. If A is L-measurable, then B = Ac can be written as

B = N ]
∞⋃
k=1

Fk,

where µ∗(N) = 0 and Fk are closed for all k ∈ N.

Definition 4.15. For a set A we define the power set P(A) by P(A) = {B : B ⊂ A}.

Definition 4.16. A ⊂ P(X) is called a σ-algebra in X provided

(i) X ∈ A;
(ii) A ∈ A =⇒ Ac ∈ A;
(iii) Ak ∈ A ∀k ∈ N =⇒

⋃∞
k=1Ak ∈ A.

Theorem 4.17. The collection of all L-measurable subsets of RN is a σ-algebra.

Theorem 4.18. A ⊂ RN is L-measurable iff for all ε > 0 there is a closed set F ⊂ A with
µ∗(A \ F ) < ε.

Definition 4.19. A triple (X,A, µ) is called a measure space if

(i) X 6= ∅;
(ii) A is a σ-algebra on X;
(iii) µ is a nonnegative and σ-additive function on A with µ(∅) = 0.

The space is called complete if each subset B ⊂ A with µ(A) = 0 satisfies µ(B) = 0.

Theorem 4.20. (RN ,A, µ) is a complete measure space, where A is the set of all L-
measurable sets, and µ is the L-measure.

4.2. Measurable Functions

Throughout this section, (X,A, µ) is a measure space.

Definition 4.21. A function f : X → R is called measurable if for each a ∈ R,

X(f ≤ a) := {x ∈ X : f(x) ≤ a}
is measurable (i.e., is an element of A).

Example 4.22 (Examples of Measurable Functions). (i) Constant functions are mea-
surable.

(ii) Characteristic functions KE are measurable iff E is measurable.
(iii) If X = R and µ = µL, then continuous and monotone functions are measurable.

Theorem 4.23. If f and g are measurable, then

X(f < g), X(f ≤ g), and X(f = g)

are measurable.



4.3. SUMMABLE FUNCTIONS 15

Theorem 4.24. If c ∈ R, f and g are measurable, then

cf, f + g, fg, |f |, f+ = sup(f, 0), and f− = sup(−f, 0)

are measurable.

Theorem 4.25. If fn : X → R are measurable for all n ∈ N, then

sup
n∈N

fn, inf
n∈N

fn, lim sup
n→∞

fn, and lim inf
n→∞

fn

are measurable.

Definition 4.26. We say that two functions f, g : X → R are equal almost everywhere and
write f ∼ g, if there exists N ∈ A with

µ(N) = 0 and {x : f(x) 6= g(x)} ⊂ N.

Theorem 4.27. If f, g : X → R, f is measurable, and f ∼ g, then g is measurable, too,
provided the measure space is complete.

4.3. Summable Functions

Definition 4.28. A measurable function f : X → [0,∞] is called summable.

Notation 4.29. For a summable function f , we introduce the following notation:

A0(f) = {x ∈ X : f(x) = 0} , A∞(f) = {x ∈ X : f(x) =∞} ,

Ank(f) =
{
x ∈ X :

k − 1
2n

< f(x) ≤ k

2n

}
,

sn(f) =
∞∑
k=1

k − 1
2n

µ (Ank(f)) +∞µ (A∞(f)) .

Theorem 4.30. Let f and g be summable. Then for all n ∈ N,

(i) sn(f) ≤ sn+1(f);
(ii) f ≤ g =⇒ sn(f) ≤ sn(g);
(iii) f ∼ g =⇒ sn(f) = sn(g).

Definition 4.31. If f is summable, then we define∫
X

fdµ = lim
n→∞

sn(f).

If B is measurable, then we define ∫
B

fdµ =
∫
X

fKBdµ.

Theorem 4.32. If f and g are summable with f ≤ g, then∫
X

fdµ ≤
∫
X

gdµ.

Theorem 4.33. If f and g are summable with f ∼ g, then∫
X

fdµ =
∫
X

gdµ.

Example 4.34. Let c ≥ 0 and A be measurable. Then∫
A

cdµ = cµ(A).
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Theorem 4.35. If f is summable, then

f ∼ 0 ⇐⇒
∫
X

fdµ = 0.

Theorem 4.36. Let (X,A, µ) be a measure space and f be summable on X. Define

ν(A) =
∫
A

fdµ.

Then (X,A, ν) is a measure space.

Theorem 4.37. If f is summable and c ≥ 0, then∫
X

(cf)dµ = c

∫
X

fdµ.

Theorem 4.38 (Beppo Levi; Monotone Convergence Theorem). Let f and fn be summable
for all n ∈ N such that fn is monotonically increasing to f , i.e., fn(x) ≤ fn+1(x) for all
n ∈ N and fn(x)→ f(x), n→∞, for all x ∈ X. Then

lim
n→∞

∫
X

fndµ =
∫
X

fdµ.

Theorem 4.39. If f and g are summable, then∫
X

(f + g)dµ =
∫
X

fdµ+
∫
X

gdµ.

Theorem 4.40 (Fatou Lemma). If fn are summable for all n ∈ N, then∫
X

lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫
X

fndµ.

4.4. Integrable Functions

If f : X → R is measurable, then f+ and f− are measurable by Theorem 4.24 and hence
summable. If

∫
X
|f |dµ <∞, then because of f+ ≤ |f |, f− ≤ |f |, and monotonicity, we have∫

X
f+dµ <∞ and

∫
X
f−dµ <∞.

Definition 4.41. A measurable function f : X → R is called integrable if
∫
X
|f |dµ < ∞,

we write f ∈ L(X), and then we define∫
X

fdµ =
∫
X

f+dµ−
∫
X

f−dµ

and ∫
A

fdµ =
∫
X

fKAdµ if fKA is integrable.

Lemma 4.42. (i) If f is integrable, then µ(A∞(|f |)) = 0;
(ii) if f is integrable and f ∼ g, then so is g (in a complete measure space);
(iii) if f and g are integrable and f ∼ g, then

∫
X
fdµ =

∫
X
gdµ;

(iv) if f : X → R is integrable and f = g − h such that g, h ≥ 0 are integrable, then∫
X
fdµ =

∫
X
gdµ−

∫
X
hdµ.

Theorem 4.43. The integral is homogeneous and linear.
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Theorem 4.44 (Lebesgue; Dominated Convergence Theorem). Suppose fn : X → R are
integrable for all n ∈ N. If fn → f , n → ∞ (pointwise) and if there exists an integrable
function g : X → [0,∞] with

|fn(x)| ≤ g(x) for all x ∈ X and all n ∈ N,

then ∫
X

fdµ = lim
n→∞

∫
X

fndµ.

Theorem 4.45. Let I be an arbitrary interval, suppose f(x, ·) is Lebesgue integrable on I
for each x ∈ [a, b], and define the Lebesgue integral

F (x) :=
∫
I

f(x, y)dy.

(i) If for each y ∈ I the function f(·, y) is continuous on [a, b] and if there exists g ∈ L(I)
such that

|f(x, y)| ≤ g(y) for all x ∈ [a, b] and all y ∈ I,

then F is continuous on [a, b].
(ii) If for each y ∈ I the function f(·, y) is differentiable with respect to x and if there

exists g ∈ L(I) such that∣∣∣∣∂f(x, y)
∂x

∣∣∣∣ ≤ g(y) for all x ∈ [a, b] and all y ∈ I,

then F is differentiable on [a, b], and we have the formula

F ′(x) =
∫
I

∂f(x, y)
∂x

dy.

Theorem 4.46. If f : [a, b]→ R is Riemann integrable, then it is also Lebesgue integrable,
and the two integrals are the same.

Theorem 4.47 (Arzelà). If fn ∈ R[a, b] converge pointwise to f ∈ R[a, b] and are uniformly
bounded, i.e.,

|fn(x)| ≤M for all x ∈ [a, b] and all n ∈ N,
then the Riemann integral satisfies

lim
n→∞

∫ b

a

fndx =
∫ b

a

fdx.

4.5. The Spaces Lp

Definition 4.48. Let p ≥ 1. Let I be an interval. We define the space Lp(I) as the set of
all measurable functions with the property |f |p ∈ L(I).

Theorem 4.49. Lp(I) is a linear space.

Theorem 4.50 (Hölder). Suppose p, q > 1 satisfy 1/p + 1/q = 1. Let f ∈ Lp(I) and
g ∈ Lq(I). Then fg ∈ L1(I) and∣∣∣∣∫

I

fgdx

∣∣∣∣ ≤ (∫
I

|f |pdx
)1/p(∫

I

|g|qdx
)1/q

.
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Theorem 4.51 (Minkowski). For f, g ∈ Lp(I) we have(∫
I

|f + g|pdx
)1/p

≤
(∫

I

|f |pdx
)1/p

+
(∫

I

|g|pdx
)1/p

.

Definition 4.52. For each f ∈ Lp(I) we define

‖f‖p :=
(∫

I

|f |pdx
)1/p

.

Lemma 4.53. Suppose gk ∈ Lp(I) for all k ∈ N such that
∑∞
n=1‖gn‖p converges. Then∑∞

n=1 gn converges to a function s ∈ Lp(I) in the Lp-sense.

Theorem 4.54. Lp(I) is a Banach space.

Remark 4.55. In this remark, some connections to probability theory are discussed.

Definition 4.56. We say that a sequence of complex functions {φn} is an orthonormal set
of functions on I ∫

I

φnφmdx =

{
0 if n 6= m

1 if n = m.

If f ∈ L2(I) and if

cn =
∫
I

fφndx for n ∈ N,

then we write

f ∼
∞∑
n=1

cnφn.

Theorem 4.57 (Riesz–Fischer). Let {φn} be orthonormal on I. Suppose
∑∞
n=1 |cn|2 con-

verges and put sn =
∑n
k=1 ckφk. Then there exists a function f ∈ L2(I) such that {sn}

converges to f in the L2-sense, and

f ∼
∞∑
n=1

cnφn.

Definition 4.58. An orthonormal set {φn} is said to be complete if, for f ∈ L2(I), the
equations ∫

I

fφndx = 0 for all n ∈ N

imply that ‖f‖ = 0.

Theorem 4.59 (Parseval). Let {φn} be a complete orthonormal set. If f ∈ L2(I) and if

f ∼
∞∑
n=1

cnφn,

then ∫
I

|f |2dx =
∞∑
n=1

|cn|2.

4.6. Signed Measures


