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CHAPTER 1
The Riemann—Stieltjes Integral

1.1. Functions of Bounded Variation

Definition 1.1. Let a,b € R with a < b. A partition P of [a,b] is a finite set of points
{zo,z1,...,2,} with
a=20< 21 <...<Xp_1 < T, =>.

The set of all partitions of [a,b] is denoted by P = Pla,b]. If P € P, then the norm of
P ={xzp,21,...,2,} is defined by

|IP|| = sup Az;, where Ax;=xz;—x,-1, 1<i<n.
i<

1<i<n

Definition 1.2. Let f: [a,b] — R be a function. We put

n

V@ £)=>|fax) = fax-r)|  for P ={zo,...,2n} €P.

k=1

The total variation of f on [a,b] is defined as

b
\a/f = ;16153\/(1% £)-
If \/Z f < oo, then f is said to be of bounded variation on [a,b]. We write f € BV]a, b].
Example 1.3. If f is nondecreasing on [a, b], then f € BV]a,b].

Theorem 1.4. If f' € Bla,b], then f € BV][a,b].

Theorem 1.5. BV][a,b] C BJa,b].

1.2. The Total Variation Function

Lemma 1.6. BV][a,b] C BV]a,z] for all x € (a,b).
Definition 1.7. For f € BV[a,b] we define the total variation function vy : [a,b] — R by

vi(x) = \w/f for all € [a,b].

Lemma 1.8. If f € BV]a,b], then vs is nondecreasing on [a, .
Lemma 1.9. If f € BVia,b], then vy — f is nondecreasing on [a, b].
Theorem 1.10. f € BV]a,b] iff f = g — h with on [a,b] nondecreasing functions g and h.
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2 1. THE RIEMANN-STIELTJES INTEGRAL

1.3. Riemann—Stieltjes Sums and Integrals

Definition 1.11. Let f,g : [a,b] — R be functions. Let P = {zg,...,2,} € Pla,b] and
&= (&,...,&,) such that

Tpo1 <& <z forall 1<k<n.
Then

S(PE f,9) fok — g(zK-1)]

is called a Riemann—Stieltjes sum for f Wlth respect to g. The function f is called Riemann—
Stieltjes integrable with respect to g over [a, b], we write f € R(g), if there exists a number
J with the following property:

Ve>030>0VYPeP, |P||<6: |S(PE fg)—J <e

(independent of &). In this case we write

/abfdg—J

and J is called the Riemann—Stieltjes integral of f with respect to g over [a, b]. The function
f is also called integrand (function) while g is called integrator (function).

Theorem 1.12 (Fundamental Inequality). If f € Bla,b], g € BV][a,b], and f € R(g), then

b
/ fdg
where | f|loc = SUPg<z<b | f(z)]-
Example 1.13. If g(z) = z for all z € [a, b], then f € R(g) iff f € R[a, b].

b
<Ifl V9,

0 fa<zx<t

E le 1.14. f € C[a,b] and =
xample f € Cle,B] and g(a) {p ift <z <b.

Theorem 1.15. Let f € Rla,b] and ¢’ € Cla,b]. Then

f€R(g /fdg—/fg

Example 1.16. [ zd(z2) = 2/3.
Theorem 1.17. If f € R(g) N R(h), then
FER(G+h) and /fd(g+h):/fdg+/fdh.
If f € R(h) and g € R(h), then
FrgeR(h) and /(f+g)dh:/fdh+/gdh.
If f € R(g) and p € R, then
pf € R(g), [ € R(pg), and /(pf)dg = /fd(pg) = p/fdg.

Lemma 1.18. If f € R(g) on [a,b] and if c € (a,b), then f € R(g) on [a,c].



1.4. NONDECREASING INTEGRATORS 3

Remark 1.19. Similarly, the assumptions of Lemma 1.18 also imply f € R(g) on [c,b].

Also, we make the definition
a b
/ fdg:—/ fdg if a<b.
a

Theorem 1.20. If f € R(g) on [a,b] and if ¢ € (a,b), then

/fdg+/ fdg—/ fdg.

Theorem 1.21. If f € R(g), then g € R(f), and
b b
/ fdg + / gdf = F(B)g(b) — F(a)g(a).

Example 1.22. ffl xd|z| =5/2.
Theorem 1.23 (Main Existence Theorem). If f € Cla,b] and g € BV]a, b|, then f € R(g).

1.4. Nondecreasing Integrators

Throughout this section we let f € Bla,b] and « be a nondecreasing function on [a, b].

Definition 1.24. If P € P, then we define the lower and upper sums L and U by

Tp—1<T<T)

L(P, f,a) = ka [a(zk) — alzg—1)], mr= min f(x)
k=1

and

U(P, f,a ZMk k) — (1)), Mp= max f(z).

Trp—1<z<T})

We also define the lower and upper Riemann—Stieltjes integrals by
b

b
fda=sup L(P, f,a) and / fda = inf U(P, f,«).
Ja_ PeP a pep
Lemma 1.25. [*fda, [”fdo € R.
Theorem 1.26. If P, P* € P with P* D P, then
L(P, f,a) < L(P", f,a) and U(P, f,a) 2 U(P", f, o).
Theorem 1.27. f:fda < f_abfdoz.

Theorem 1.28. If f € Cla,b] and a is nondecreasing on [a,b], then f € R(a) on [a,b)].
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CHAPTER 2
Sequences and Series of Functions

2.1. Uniform Convergence

Definition 2.1. Let {f,}nen be funtions defined on E C R. Suppose {f,} converges for
all x € E. Then f defined by

f(z)= lim f,(z) for ze€FE

n—00

is called the limit function of { f,,}. We also say that f,, — f pointwiseon E. If f, = > }'_, gk
for functions gi, k € N, then f is also called the sum of the series Y ;_, gi, write > po | gi.

Example 2.2. (i) fo(z) =4z +2%/n, z €R.
(ii) fo(z) = 2™, z €]0,1].
(iii) fo(x) = limy—oo [cos(nlma)]*™, z € R.
(iv) fu(z) = %, x eR.
MPrif0<z< %
(V) falz) =4 2n(1—na)if &~ <z <1
0if 2 <z <1

Definition 2.3. We say that {f, }nen converges uniformly on E to a function f if
Ve>03dIN eNVn>NVz € E: |f,(x) — f(x)] <e.

If f, = > p_y gk, we also say that the series Y /7 g, converges uniformly provided {f,}
converges uniformly.

Example 2.4. (i) fo(z) =2, = €[0,1/2].
(ii) fo(z)=2", z €0,1].

Theorem 2.5 (Cauchy Criterion). The sequence {f,}nen converges uniformly on E iff
Ve>03dN eNVm,n>NVz € E: |fo(z) — fm(z)| <e.
Theorem 2.6 (Weierstral M-Test). Suppose {gi }ren satisfies

(o)
lg(x)] < MpVzx € EVYk e N  and Z My, converges.
k=1

Then Y ro | g converges uniformly.
2.2. Properties of the Limit Function

Theorem 2.7. Suppose f,, — f uniformly on E. Let x be a limit point of E and suppose
A, = tlim fu(t)  exists for all n € N.
—XT

5



6 2. SEQUENCES AND SERIES OF FUNCTIONS

Then {Ap}nen converges and
lim A4, = tlim.f(t).

n—oo
Theorem 2.8. If f,, are continuous on E for alln € N and f, — f uniformly on E, then
f is continuous on E.

Corollary 2.9. If gi, are continuous on E for all k € N and Y ;- | g5 converges unifomly
on E, then Y7, gi is continuous on E.

Definition 2.10. Let X be a metric space. By C(X) we denote the space of all complex-
valued, continuous, and bounded functions on X. The supnorm of f € C(X) is defined
by
[flloe = sup |f(x)]  for feC(X).
re

Theorem 2.11. (C(X), d(f,9) = ||f — 9lleo) s a complete metric space.
Theorem 2.12. Let o be nondecreasing on [a,b]. Suppose f, € R(a) for alln € N and
fn — [ uniformly on [a,b]. Then f € R(a) on |a,b] and

b b
/fda: lim fn(z)dov.

n—oo

Corollary 2.13. Let a be nondecreasing on [a,b]. Suppose gi, € R(c) on [a,b] for allk € N
and Y 7o, gi converges uniformly on [a,b]. Then

b 00 b
/ grdoa = Z/ grda.
e k=1 k=179

Theorem 2.14. Let f, be differentiable functions on [a,b] for all n € N such that
{fn(z0) }nen converges for some xg € [a,b]. If {f] }nen converges uniformly on |a,b], then
{fn}nen converges uniformly on [a,b], say to f, and

f(z)= Jim fi(x)  forall € [a,b].

Corollary 2.15. Suppose gy are differentiable on [a,b] for all k € N and Y ;- gj. is
uniformly convergent on [a,b]. If Y77 gr(xo) converges for some point xo € [a,b], then
> rey gk is uniformly convergent on [a,b], and

o0 ! o0
(zgk) Y
k=1 k=1

2.3. Equicontinuous Families of Functions

Example 2.16. f,(z) = 0<z<1l,neN.

I
Definition 2.17. A family F of functions defined on F is said to be equicontinuous on E if
Ve>030>0 Ve,ye E: |[z—y| <o) VfeF: |f(x)— fly)l<e.

Theorem 2.18. Suppose K is compact, f, € C(K) for alln € N, and {f,}nen converges

uniformly on K. Then the family F = {f, : n € N} is equicontinuous.

Definition 2.19. The sequence { f,, } nen is called pointwise bounded if there exists a function
¢ such that |f,(z)| < ¢(z) for all n € N. It is called uniformly bounded if there exists a
number M such that || fr|ec < M for all n € N.
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Theorem 2.20. A pointwise bounded sequence {f,}nen on a countable set E has a subse-
quence { fn, ken such that { fn, (x)}ken converges for all x € E.

Theorem 2.21 (Arzela—Ascoli). Suppose K is compact and {fn}nen C C(K) is point-
wise bounded and equicontinuous. Then {f,} is uniformly bounded on K and contains a
subsequence which is uniformly convergent on K.

2.4. Weierstraf3’ Approximation Theorem

Theorem 2.22 (Weierstra’ Approximation Theorem). Let f € Cla,b]. Then there exists
a sequence of polynomials { Py, }nen with

P, — f uniformly on [a,b].
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CHAPTER 3

Some Special Functions

3.1. Power Series

Definition 3.1. A function f is said to be represented by a power series around a provided
o0
f(z) = ch(x —a)" for some ¢, n € Np.
n=0

Such an f is called analytic.

Theorem 3.2. If

o0
Z cp™  converges for x| < R,
n=0

then it converges uniformly on [—R+ €, R — €] for all e > 0. Also, f defined by
o0
flx) = Z enx™  for |zl <R
n=0

is continuous and differentiable on (—R, R) with

o0

F@) =3 (n+1)cppa™  for || <R

n=0

Corollary 3.3. Under the hypotheses of Theorem 3.2, f™) exists for alln € N and

oo

FR (z) = Z nin—1)...(n—k+ ez "

n=k

holds on (=R, R). In particular,
F™0) =nle, forall neNg.

Theorem 3.4 (Abel’s Theorem). Suppose Y ¢, converges. Put
o
f(a:)chnx” for xe(-1,1).
n=0

Then
lim f(x)= ch.
n=0

r—1—

Theorem 3.5. Suppose Y o an, > vogbn, and Y. " ¢, converge to A, B, and C, where
Cn =D peo Akbn—r. Then C = AB.
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Theorem 3.6. Given a double sequence {a;;}; jen. If

Z la;;| =b; foralli e N and Z b; converges,

j=1 i=1
then

n

Theorem 3.7 (Taylor’s Theorem). Suppose > -, cnz™ converges in (—R,R) and put

f(z) =377 gena™. Then

> £(n)
f(x)zzf n'(a)(x—a)" for |r—al <R-—lal
n=0 ’

3.2. Exponential, Logarithmic, and Trigonometric Functions

Definition 3.8. We define the exponential function by
>© k
E) ==
k!
k=0

forall 2zeC.

Remark 3.9. In this remark, some properties of the exponential function are discussed.

Definition 3.10. We define the trigonometric functions by
E(iz) + E(—ix) E(iz) — E(—ix)
2 2i '

Remark 3.11. In this remark, some properties of trigonometric functions are discussed.

C(z) = and S(z) =

3.3. Fourier Series

Definition 3.12. A trigonometric polynomial is a sum
N
flx)=ao+ Z (an cos(nz) + by sin(nx)), where ag, by € C.

n=1

A trigonometric series is a series

f(x) =aog+ Z (an cos(nz) + by, sin(nx)) .

n=1
Remark 3.13. In this remark, some properties of trigonometric series are discussed.
Definition 3.14. A sequence {¢, }nen is called an orthogonal system of functions on [a, b]
if
i \ -
(Dn, D) = / On(2)Pm(x)dx =0 for all m #n.
If, in addition
6012 = (¢n,¢n) =1 forall neN,

then {¢,} is called orthonormal on [a,b]. If {¢,} is orthonormal on [a,b], then

cn={(f,¢,) forall neN
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are called the Fourier coefficients of a function f relative to {¢,}, and

is called the Fourier series of f.

Theorem 3.15. Let {¢,} be orthonormal on [a,b]. Let

Sn(f7 = Sn Z Cm¢m where f(m) ~ Z Cm¢m(‘r)7
m=1
and put
ty(x) = Z Ym®Pm(x)  with v, € C.
m=1
Then

1f = snll3 < [1f = tall3
with equality if Ym = cm for all m € N.

Theorem 3.16 (Bessel’s Inequality). If {¢,} is orthonormal on [a,b] and if f(x) ~

Zfzozl Cn¢n(£), then
S leal® < (1113
n=1

In particular, lim,,_, . ¢, = 0.

Definition 3.17. The Dirichlet kernel is defined by

Z e forall z€R.
n=—N

Remark 3.18. In this remark, some properties of the Dirichlet kernel are discussed.

Theorem 3.19 (Localization Theorem). If, for some x € R, there exist 6 > 0 and M < oo
with
|fl+1t) = f(@)| < Mlt|  forall te(=4,0),
then
Jim_sw(fi2) = [(a).
Corollary 3.20. If f(z) = 0 for all x in some interval J, then sy(f;z) — 0 as N — o0
forall x € J.

Theorem 3.21 (Parseval’s Formula). If f and g have period 21 and are Riemann integrable,

i cne™  and  g(x Z Yre™

n—=—oo n—=—oo

then
1 27 _ 2
or | f Z CnVn, - |f(z)["de = ; [

n=—oo

and
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3.4. The Gamma Function
Definition 3.22. For z € (0, 00), we define the Gamma function as
oo
I'(z) = / t*tetat.
0

Theorem 3.23. The Gamma function satisfies the following.

(i) T(x + 1) = aT'(z) for all x € (0,00);
(ii) T(n+ 1) =n! for alln e N;
(iii) logT' is convex on (0, 00).

Theorem 3.24. If f is a positive function on (0,00) such that f(x + 1) = zf(x) for all
x € (0,00), f(1) =1, log f is convex, then f(x) =T(x) for all z € (0,0).

Theorem 3.25. We have

x

) nln
F(x):nll—»H;ox(x—Fl)(az—Fn)

Definition 3.26. For x > 0 and y > 0, we define the Beta function by

1
B(z,y) = / t* (1 — )Y~ Ldt.
0
Theorem 3.27. If x > 0 and y > 0, then

Blo,y) = I'(x)I'(y)

Iz +y)
Example 3.28. ['(1/2) = /7 and [*_e % ds = \/7.

Theorem 3.29 (Stirling’s Formula). We have

. I(z+1)
ZL’LIIC}C (%) \/271'1'



CHAPTER 4
The Lebesgue Integral

4.1. The Lebesgue Measure

Example 4.1. In this example, the method of the Lebesgue integral is discussed.

aq b1
Definition 4.2. Let a = b = e RN, We write a < b if a; < b; for all
an bN
1 <i< N. The set [a,b] = {z € RN : a < x < b} is called a closed interval. The volume of
I = [a,b] is defined by

N

11 =TT (o = a).

i=1
Similarly we define intervals (a,b], [a,b), and (a,b), and their volumes are defined to be
[a, ], too.

Lemma 4.3. If I, I, J;, denote intervals in RY, then
i) IcJ = |I|<|J|;
(i) I=W,_I; = [=X7_Ll
(i) TcUjey J; = 1< X5 il
Definition 4.4. We define the outer measure of any set A C RN by

w*(A) = inf Z |Ij|: AC U I; and I; are closed intervals for all j € N
j=1 j=1
Example 4.5. For A = {a} we have pu*(A) = 0.

Lemma 4.6. The outer measure u* is

(i) monotone: AC B = p*(A) < p*(B);
(ii) subadditive: p* (Upeq Ak) < > pe l,u *(Ag)
)
1

Lemma 4.8. If I is an interval, then p*(I) = \
Lemma 4.9. (i) If d(A, B) > 0, then p*(AU B) = u*(A) + p*(B);
(ii) if Ax C Iy and {I2}ren are pairwise disjoint, then p* (Uze; Ak) = D poq 1*(Ak).
Theorem 4.10. We have
VACRY Ve >030 > A: O open and p*(0) < p*(A) +e.

Example 4.7. Each countable set C has p*(C

13



14 4. THE LEBESGUE INTEGRAL

Definition 4.11. A set A C R¥ is called Lebesgue measurable (or L-measurable) if
Ve>030 D A: O open and p*(O\ A) <e.

If A is L-measurable, then p(A) = pu*(A) is called its L-measure.

Theorem 4.12. The countable union of L-measurable sets is L-measurable.

Theorem 4.13 (Examples of L-measurable Sets). Open, compact, closed, and sets with
outer measure zero are L-measurable.

Theorem 4.14. If A is L-measurable, then B = A° can be written as
B=NuW U Fy,
k=1
where p*(N) =0 and Fy, are closed for all k € N.
Definition 4.15. For a set A we define the power set P(A) by P(A) ={B: B C A}.
Definition 4.16. A C P(X) is called a o-algebra in X provided

(i) X € A;
(i) Ac A = A°c A;
(ili) A€ AVkeN = UZilAkGA.

Theorem 4.17. The collection of all L-measurable subsets of RY is a o-algebra.

Theorem 4.18. A C R is L-measurable iff for all € > 0 there is a closed set F C A with
WA\ F) <e.
Definition 4.19. A triple (X, A, p) is called a measure space if
(i) X #0;
(ii) A is a o-algebra on X;
(iii) p is a nonnegative and o-additive function on A with p(0) = 0.

The space is called complete if each subset B C A with u(A) = 0 satisfies u(B) = 0.
Theorem 4.20. (RN, A, ) is a complete measure space, where A is the set of all L-

measurable sets, and p is the L-measure.

4.2. Measurable Functions

Throughout this section, (X, .4, ) is a measure space.
Definition 4.21. A function f : X — R is called measurable if for each a € R,
X(f<a)={reX: f(z) <a)
is measurable (i.e., is an element of A).

Example 4.22 (Examples of Measurable Functions). (i) Constant functions are mea-
surable.
(ii) Characteristic functions K are measurable iff E is measurable.
(iii) If X =R and p = pp, then continuous and monotone functions are measurable.

Theorem 4.23. If f and g are measurable, then

X(f<g), X(f<g), and X(f=g)
are measurable.
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Theorem 4.24. If c € R, f and g are measurable, then

of. f+g, fo. |fl. fr=sup(£.0), and f=sup(~f,0)
are measurable.
Theorem 4.25. If f,, : X — R are measurable for all n € N, then

sup fn, inf f,, limsupf,, and liminf f,
neN neN n—00 n—oo

are measurable.

Definition 4.26. We say that two functions f,¢ : X — R are equal almost everywhere and
write f ~ g, if there exists N € A with

w(N)=0 and {z: f(z)#g(x)} CN.
Theorem 4.27. If f,g : X — R, f is measurable, and f ~ g, then g is measurable, too,

provided the measure space is complete.

4.3. Summable Functions

Definition 4.28. A measurable function f : X — [0, oc] is called summable.

Notation 4.29. For a summable function f, we introduce the following notation:
A()(f):{l'EXIf(ZC):O}, Aoo(f):{xGXf(x)ZOO},

anih={eex: Fol i< o),

2’ﬂ
3n) = S0 P (A () oo (A1),
k=1

Theorem 4.30. Let f and g be summable. Then for all n € N,

(1) su(f) < sny1(f);
(ii) f <g = Sn(f) < sn(g);
(111) f ~g = Sn(f) = sn(g)

Definition 4.31. If f is summable, then we define
fdp = lim s,(f).
b'e

If B is measurable, then we define

/deu=/XfKBdu-

Theorem 4.32. If f and g are summable with f < g, then

/deué/xgdu~

Theorem 4.33. If f and g are summable with f ~ g, then

/deu=/ngu~

Example 4.34. Let ¢ > 0 and A be measurable. Then

/A cdp = cu(A).
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Theorem 4.35. If f is summable, then
f~0 = / fdp=0.
b'e
Theorem 4.36. Let (X, A, u) be a measure space and f be summable on X. Define
v(A) = / fdu.
A

Then (X, A,v) is a measure space.

Theorem 4.37. If f is summable and ¢ > 0, then

[ errn=c [ san

Theorem 4.38 (Beppo Levi; Monotone Convergence Theorem). Let f and f, be summable
for all n € N such that f,, is monotonically increasing to f, i.e., fn(z) < foi1(x) for all
n €N and f,(z) — f(z), n — oo, for allz € X. Then

lim fnd,u:/ fdp.

Theorem 4.39. If f and g are summable, then

/X(f+g)du=/xfdu+/xgdu-

Theorem 4.40 (Fatou Lemma). If f,, are summable for all n € N, then

/ liminf f,dp < liminf/ fndp.
X nmee Jx

n—oo

4.4. Integrable Functions

If f : X — Ris measurable, then f* and f~ are measurable by Theorem 4.24 and hence
summable. If [, |f|du < oo, then because of f+ < |f|, f~ <|f|, and monotonicity, we have

Jx frdp < oo and [y f~dp < oco.

Definition 4.41. A measurable function f : X — R is called integrable if fX |fldp < oo,
we write f € L(X), and then we define

/)(fd/A:/Xf*du—/Xf‘du

/fdu:/ fKadp if fK 4 is integrable.
A X

and

Lemma 4.42. (i) If f is integrable, then p(Ax(|f])) = 0;
(ii) if f is integrable and f ~ g, then so is g (in a complete measure space);

(iii) if f and g are integrable and f ~ g, then [y fdu = [, gdu;
(iv) of f: X — R is integrable and f = g — h such that g,h > 0 are integrable, then

Jx fdp =[x gdu = [ hdp.

Theorem 4.43. The integral is homogeneous and linear.
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Theorem 4.44 (Lebesgue; Dominated Convergence Theorem). Suppose f, : X — R are
integrable for alln € N. If f, — f, n — oo (pointwise) and if there exists an integrable
function g : X — [0, 00] with

|[fu(z)| <g(xz) forall xz€X andall neN,
then
fdp = lim frndp.
X n—oo X

Theorem 4.45. Let I be an arbitrary interval, suppose f(x,-) is Lebesgue integrable on I
for each x € [a,b], and define the Lebesgue integral

- /I £z, y)dy

(i) If for eachy € I the function f(-,y) is continuous on [a,b] and if there exists g € L(I)
such that

|f(z,y)| <gly) forall x€la,b] andall yel,

then F is continuous on [a,b].
(ii) If for each y € I the function f(-,y) is differentiable with respect to x and if there
exists g € L(I) such that

‘ 0f(z,9)

3 ‘ <g(y) forall xz€la,b andall yel,
x

then F' is differentiable on [a,b], and we have the formula
of(z,y)
Fl(z)= | =244
(z) /1 5 Y

Theorem 4.46. If f : [a,b] — R is Riemann integrable, then it is also Lebesgue integrable,
and the two integrals are the same.

Theorem 4.47 (Arzeld). If f,, € Rla, b] converge pointwise to f € Rla, b] and are uniformly
bounded, i.e.,

|fn(x)| <M  forall z€la,b andall neN,

then the Riemann integral satisfies

lim fndxf / fdzx.

n—oo

4.5. The Spaces L?

Definition 4.48. Let p > 1. Let I be an interval. We define the space LP(I) as the set of
all measurable functions with the property |f|? € L(I).

Theorem 4.49. LP(I) is a linear space.
Theorem 4.50 (Holder). Suppose p,q > 1 satisfy 1/p +1/q = 1. Let f € LP(I) and

g € Li(I). Then fg e L' (I) and
1/p 1/q
p q
<([firas) " ( [1omac)

/I fods




18 4. THE LEBESGUE INTEGRAL

Theorem 4.51 (Minkowski). For f,g € LP(I) we have

1/p 1/p 1/p
Pd Pd Pqd .
(/I|f+g| x) S(/Ifl ) *(/,g' x)

Definition 4.52. For each f € LP(I) we define

1/p
1l o= ( / Ifl”drc> |

Lemma 4.53. Suppose g, € LP(I) for all k € N such that >, ||gnll, converges. Then
> oo | gn converges to a function s € LP(I) in the LP-sense.

Theorem 4.54. LP(I) is a Banach space.
Remark 4.55. In this remark, some connections to probability theory are discussed.

Definition 4.56. We say that a sequence of complex functions {¢, } is an orthonormal set

of functions on I
— 0 if
I 1 if n=m.

cn:/f%dx for neN,
I

If f € L?(I) and if

then we write
oo
f ~ Z Cn¢n-
n=1

Theorem 4.57 (Riesz Fischer). Let {¢,} be orthonormal on I. Suppose Y oo, |c,|* con-
verges and put s, = Y ._, ckdr. Then there exists a function f € L*(I) such that {s,}
converges to f in the L?-sense, and

[~ Z CnPn-
n=1

Definition 4.58. An orthonormal set {¢,} is said to be complete if, for f € L*(I), the
equations

/f@dmzo forall neN

I

imply that || f|| = 0.

Theorem 4.59 (Parseval). Let {¢,} be a complete orthonormal set. If f € L*(I) and if

f ~ Z CnPns

n=1

then

/I P =Y feal?.
n=1

4.6. Signed Measures



