- 1. For $u(x,t) = x^2 e^t \sqrt{t}e^{-x}$, find $u_{xt}(\ln 2, 9)$.
- 2. Use the geometric method to find the general solution of $xu_x + t^2u_t = x$.
- 3. Solve $u_{xx} 2u_{xt} + u_{tt} = x + t$, $u(x,0) = \phi(x)$, $u_t(x,0) = \psi(x)$ by "factoring the operator".
- 4. Prove: If ϕ is a periodic function with period p, then the solution of the diffusion equation $u_t = ku_{xx}$ (on the whole real line) together with $u(x,0) = \phi(x)$ is also periodic in x with period p.
- 5. Separate the variables for $u_{xx} + 2u_x + u_t = 0$, u(0,t) = u(1,t) = 0 and find all eigenvalues and eigenfunctions of the resulting eigenvalue problem.
- 6. Let f(x) = a for $-\pi \le x < 0$, f(0) = 0, and f(x) = b for $0 < x \le \pi$. Find the Fourier series of f in $[-\pi, \pi]$. Does it converge pointwise to f?
- 7. Perform separation of variables to solve u(m+1,n) u(m,n+1) + u(m,n) = 0, $u(m,0) = 2^m$.
- 8. Solve $u_t = u_{xx}$ in [0, 4] with u = 0 at both ends and u(x, 0) = x(5 x), using the forward difference scheme with $\Delta x = 1$ and $\Delta t = 0.25$ to find the approximate value of u(2, 1).