| Set | MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY | Founded 1870 Rolla, Missouri | |-----|---|--------------------------------| | | | | | | | | | | | | | | Section 7.2 | | The Definition of the Laplace Transform ### Laplace Transforms: The Basic Goal We wish to solve IVPs involving DEs of the form $$a_ny^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1y'+a_0y=g(t)$$ with initial conditions $$y(0)=y_0,y'(0)=y_1,\dots,y^{(n-1)}(0)=y_{n-1}$$ If g(t) is reasonably straightforward, we can use undetermined coefficients or variation of parameters. If g(t) is more complicated, Laplace transforms often work. ### Solving IVPs Using Laplace: The Basic Idea - 1. Convert the initial value problem into an algebraic equation using the Laplace transform - 2. Solve the algebraic equation - 3. Convert the solution of the algebraic equation into a solution of the initial value problem using the inverse Laplace transform ## Are Laplace Transforms Useful? # Yes! The Laplace transform allows us to solve initial value problems that cannot be solved using other techniques. The Laplace transform is a fundamental tool in systems and in control theory. ### The Laplace Transform Let f be a function defined on $[0,\infty)$. Then, the Laplace transform of f at s is defined by $$\mathcal{L}{f(t)} = F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$ for those values of \boldsymbol{s} for which the improper integral converges. ### Example 1 Find the Laplace transform of $f(t) = e^{4t}$. ### Example 3 Find the Laplace transforms of the functions $f(t)=\cos(bt)$ and $g(t)=\sin(bt)$ where b is a real constant. ### **Table of Laplace Transforms** | f(t) | $\mathcal{L}\{f(t)\} = F(s)$ | |---------------------------|------------------------------| | 1 | $\frac{1}{s}$, $s > 0$ | | e^{at} | $\frac{1}{s-a}, s > a$ | | t^n , $n = 1, 2, \dots$ | $\frac{n!}{s^{n+1}}, s > 0$ | | $\sin(bt)$ | $\frac{b}{s^2 + b^2}, s > 0$ | | $\cos(bt)$ | $\frac{s}{s^2 + b^2}, s > 0$ | | | | ### Example 4 Find the Laplace transform of $f(t) = 2e^{3t} + 3t^2 + 9\sin 4t$ | Piecewise Continuity If a function f is continuous at every point of a finite interval $[a,b]$ except possibly at a finite number of points where f has a jump discontinuity, then f is said to be piecewise continuous on $[a,b]$. If f is piecewise continuous on every possible interval $[0,N]$ for $N>0$, then f is said to be piecewise continuous on $[0,\infty)$. | | |--|--| | Exponential Order A function f is said to be of exponential order α if there exist positive constants T and M such that $ f(t) \leq Me^{\alpha t}$ for all $t \geq T$. | | | Theorem If f is piecewise continuous on $[0,\infty)$ and of exponential order α , then $\mathcal{L}\{f(t)\}$ exists for $s>\alpha$. | | # Find the Laplace transform of $f(t) = \begin{cases} e^t & 0 \le t < 1\\ 1 + e^{2t} & 1 < t \end{cases}$