
	_
SET MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY FOUNDS FOunded 1879 Paging Messouri	
Sections 9.1 and 5.1	
Introduction to Systems of	
Linear Differential Equations	
Interconnected Fluid Tanks	
	-
	-
	1
Goals for Today	
Today, we will consider one application of systems of linear	
differential equations: interconnected fluid tanks.	
·	
	•
	1
Example 1	
Consider an interconnected system of two tanks, Tank 1 and Tank 2. Tank 1	
initially contains 30 gal of water and 25 oz of salt, and Tank 2 initially contains 20 gal of water and 25 oz of salt, and Tank 2 initially contains 20 gal of water and 15 oz of salt. Water containing 1 oz/gal of salt flows from outside the system into Tank 1 at a rate of 1.5 gal/min. The mixture flows from	
Tank 1 to Tank 2 at a rate of 3 gal/min. Water containing 3 oz/gal of salt also	
flows from outside the system into Tank 2 at a rate of 1 gal/min. The mixture drains from Tank 2 at a rate of 4 gal/min, of which some flows back into Tank 1	
at a rate of 1.5 gal/min while the remainder leaves the system.	
Let $Q_1(t)$ and $Q_2(t)$, respectively, be the amount of salt in each tank at time t . Set up a system, including initial conditions, which models the flow process.	

Systems of Linear Differential Equations

If a system of differential equations can be expressed in the form $\frac{d^2}{dt^2} = \frac{1}{2} \frac{dt}{dt} + \frac{$

$$x'_1 = a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n + f_1(t)$$

$$x'_2 = a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n + f_2(t)$$

$$x_n'=a_{n1}(t)x_1+a_{n2}(t)x_2+\cdots+a_{nn}(t)x_n+f_n(t)$$
 it is said to be a first-order linear system in normal form.

it is said to be a first-order lifear system in normal form.

If
$$f_1(t) = f_2(t) = \cdots = f_n(t) = 0$$
, the system is homogeneous.

Systems in Matrix Form

In matrix form, a first-order linear system can be written as $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{f}(t)$

$$\text{where } A \text{ is the } n \times n \text{ coefficient matrix } A = \begin{bmatrix} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\ \vdots & \vdots & & \vdots \\ a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t) \end{bmatrix}$$

and
$$\mathbf{f}(t) = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}$$

$$\mathbf{x}(t)$$
 is the solution vector $\mathbf{x}(t) = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$

Example 2

Express the given system of differential equations in matrix form.

$$x' = x + y + z$$
$$y' = 2z - x$$

z'=4y

Converting Higher-Order Equations to Systems

To rewrite an n^{th} -order linear homogeneous

differential equation
$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 y' + a_0 y = 0$$
 as a first-order linear system, let $x_n = y$

$$x_1 = y$$

$$x_2 = y'$$

$$\vdots$$

$$x_n = y^{(n-1)}$$

Then the system can be expressed as $x'_1 = x_2$ $x'_2 = x_3$ \vdots

:
$$x'_{n-1} = x_n$$

 $x'_n = -\frac{a_0}{a_n} x_1 - \frac{a_1}{a_n} x_2 - \dots - \frac{a_{n-1}}{a_n} x_r$

Example 3

Express the damped, unforced spring-mass equation $my'' + \gamma y' + ky = 0$

as a matrix system in normal form.

Example 4 Express the higher-order system $x'' + 3x' - y' + 2y = 0$ $y'' + x' + 3y' + y = 0$ as a matrix system in normal form.	