| MISSOUR UNIVERSITY OF SCIENCE AND TECHNOLOGY FRANCE UNIVERSITY OF SCIENCE AND TECHNOLOGY           |
|----------------------------------------------------------------------------------------------------|
|                                                                                                    |
| Section 9.4                                                                                        |
|                                                                                                    |
| Linear Systems in Normal Form                                                                      |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
| Goals for Today                                                                                    |
| In this section, we will explore various properties of solutions to linear systems in normal form. |
| In the next section, we will actually solve these systems.                                         |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |

# If all elements of A(t) are constant, the system is said to have constant coefficients.

 $\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{f}(t)$  where  $\mathbf{x}(t)$  is  $n \times 1$ , A(t) is  $n \times n$ , and  $\mathbf{f}(t)$  is  $n \times 1$ .

If  $\mathbf{f}(t) = \mathbf{0}$ , the system is homogeneous.

expressed as

#### Existence of Unique Solutions to Linear Systems

If A(t) and  $\mathbf{f}(t)$  are continuous on an open interval I which contains  $t_0$ , then the initial value problem

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{f}(t), \qquad \mathbf{x}(t_0) = \mathbf{x}_0$$

has a unique solution  $\mathbf{x}(t)$  on the interval I for any choice of  $\mathbf{x}_0$ .

# Solutions of Homogeneous Linear Systems

If  $\mathbf{x}_1, \dots, \mathbf{x}_k$  are solutions to the homogeneous linear system  $\mathbf{x}'(t) = A(t)\mathbf{x}(t)$ 

then  $c_1\mathbf{x}_1 + \cdots + c_k\mathbf{x}_k$  is also a solution for any constants  $c_1,\dots,c_k.$ 

#### The Wronskian of Vector Functions

The Wronskian of n vector functions

The Wronskian of 
$$n$$
 vector functions 
$$\mathbf{x}_1(t) = \begin{bmatrix} x_{11}(t) \\ \vdots \\ x_{n1}(t) \end{bmatrix}, \dots, \mathbf{x}_n(t) = \begin{bmatrix} x_{1n}(t) \\ \vdots \\ x_{nn}(t) \end{bmatrix}$$
 is defined as the function 
$$\begin{bmatrix} x_{11}(t) & x_{12}(t) & \cdots & x_1 \end{bmatrix}$$

$$W[\mathbf{x}_{1},...,\mathbf{x}_{n}](t) = \begin{vmatrix} x_{11}(t) & x_{12}(t) & \cdots & x_{1n}(t) \\ x_{21}(t) & x_{22}(t) & \cdots & x_{2n}(t) \\ \vdots & \vdots & & \vdots \\ x_{n1}(t) & x_{n2}(t) & \cdots & x_{nn}(t) \end{vmatrix}$$

Provided that  $W[\mathbf{x}_1, ..., \mathbf{x}_n](t_0) \neq 0$  for at least one point  $t_0$  in an interval I, we conclude that the functions  $\mathbf{x}_1,\dots,\mathbf{x}_n$  are linearly independent on I.

# Example 1

Determine whether the given vector functions are linearly independent or linearly dependent on the interval  $(-\infty,\infty)$ .  $\mathbf{x}_1 = \begin{bmatrix} e^{-5t} \\ -e^{-5t} \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 6e^{2t} \\ e^{2t} \end{bmatrix}$ 

$$\mathbf{x}_1 = \begin{bmatrix} e^{-5t} \\ -e^{-5t} \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 6e^{2t} \\ e^{2t} \end{bmatrix}$$

#### **Fundamental Sets of Solutions**

If  $\mathbf{x}_1, \dots, \mathbf{x}_n$  are a linearly independent set of solutions of the homogeneous linear system

 $\mathbf{x}'(t) = A(t)\mathbf{x}(t)$ 

where A(t) is  $n \times n$ , then  $\{\mathbf{x}_1, ..., \mathbf{x}_n\}$  is a fundamental set of solutions for the homogeneous linear system.

# General Solutions of Homogeneous Linear Systems

Let A(t) be an  $n \times n$  matrix function which is continuous on an interval I. If the homogeneous linear system

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t)$$

has a fundamental set of solutions  $\{\mathbf x_1, \dots, \mathbf x_n\}$  on the interval I, then the general solution of the homogeneous system is

$$\mathbf{x}(t) = c_1 \mathbf{x}_1 + \dots + c_n \mathbf{x}_n$$

where  $c_1, \dots, c_n$  are constants.

### General Solutions of Nonhomogeneous Linear Systems

Let A(t) be an  $n \times n$  matrix function which is continuous on an interval I. If  $\mathbf{x}_p$  is a particular solution to the nonhomogeneous

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{f}(t)$$

on the interval I and  $\{{\bf x}_1,\dots,{\bf x}_n\}$  is a fundamental set of solutions for the associated homogenous equation on I, then the general solution of the nonhomogeneous system is

$$\mathbf{x}(t) = \mathbf{x}_h(t) + \mathbf{x}_p(t)$$

where  $\mathbf{x}_h(t) = c_1 \mathbf{x}_1 + \dots + c_n \mathbf{x}_n$ .

# Example 2

Recall (from Example 1) that  $\mathbf{x}_1=\begin{bmatrix}e^{-5t}\\-e^{-5t}\end{bmatrix}$  and  $\mathbf{x}_2=\begin{bmatrix}6e^{2t}\\e^{2t}\end{bmatrix}$  are linearly independent.

a) Verify that  $x_1$  and  $x_2$  are solutions of the linear system  $x'=\begin{bmatrix}1&6\\1&-4\end{bmatrix}x$ 

$$\mathbf{x}' = \begin{bmatrix} 1 & 6 \\ 1 & -4 \end{bmatrix} \mathbf{x}$$

b) State the general solution of the system.

#### **Fundamental Matrices**

Let A(t) be an  $n \times n$  matrix function which is continuous on an interval I. If the homogeneous linear system

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t)$$

has a fundamental set of solutions  $\{\mathbf x_1, \dots, \mathbf x_n\}$  on the interval I, then

$$X(t) = [\mathbf{x}_1 \quad \cdots \quad \mathbf{x}_n]$$

is called a fundamental matrix for the homogeneous system.

X(t) is a solution of the system X'(t) = A(t)X(t).

Example 2 (continued) 
$$\mathbf{x}_1 = \begin{bmatrix} e^{-5t} \\ -e^{-5t} \end{bmatrix} \text{ and } \mathbf{x}_2 = \begin{bmatrix} 6e^{2t} \\ e^{2t} \end{bmatrix} \text{ form a fundamental set of solutions of the linear system} \\ \mathbf{x}' = \begin{bmatrix} 1 & 6 \\ 1 & -4 \end{bmatrix} \mathbf{x}$$
 c) State a fundamental matrix  $X(t)$  for the linear system.

$$\mathbf{x}' = \begin{bmatrix} 1 & 6 \\ 1 & -4 \end{bmatrix} \mathbf{x}$$

- d) Verify that the fundamental matrix  $\boldsymbol{X}(t)$  is a solution of the linear system.
- e) State the general solution of the system using X(t)