Homogeneous Linear Systems with Constant Coefficients

Goals for Today

In this section, we will introduce eigenvalue and eigenvectors and explore their usage in solving homogeneous linear systems of the form

$$\mathbf{x}' = A\mathbf{x}$$

where A is an $n \times n$ constant matrix.

Solving $\mathbf{x}' = A\mathbf{x}$

Assume $\mathbf{x}' = A\mathbf{x}$ with A constant has solutions of the form

$$\mathbf{x} = e^{\lambda t} \mathbf{v}$$

where ${f v}$ is a nonzero constant vector.

If we plug our assumed solution into $\mathbf{x}' = A\mathbf{x}$, we get

$$(e^{\lambda t}\mathbf{v})' = Ae^{\lambda t}\mathbf{v}$$
$$\lambda e^{\lambda t}\mathbf{v} = Ae^{\lambda t}\mathbf{v}$$

Since $e^{\lambda t}$ is a nonzero scalar quantity, we can divide both sides by $e^{\lambda t}$ and obtain

$$\lambda \mathbf{v} = A\mathbf{v}$$

Eigenvalues and Eigenvectors An eigenvector of an $n \times n$ matrix A is a nonzero vector \mathbf{v} such that $A\mathbf{v} = \lambda \mathbf{v}$ for some scalar λ . A scalar λ is called an eigenvalue of A if there is a nontrivial solution \mathbf{v} of $A\mathbf{v} = \lambda \mathbf{v}$. Such an \mathbf{v} is called an eigenvector of Acorresponding to λ . Solving $\mathbf{x}' = A\mathbf{x}$ $\mathbf{x}' = A\mathbf{x}$ with A constant has solutions of the form $\mathbf{x} = e^{\lambda t} \mathbf{v}$ where λ is an eigenvalue of A with corresponding eigenvector ${\bf v}$. **Finding Eigenvalues** The eigenvalue-eigenvector equation $A\mathbf{v}=\lambda\mathbf{v}$ is equivalent to For this equation to have a nontrivial solution, properties of linear algebra tell us that $(A - \lambda I)$ must *not* be invertible. Recall: If $\det A \neq 0$, then A is invertible. If det A = 0, then A is not invertible. Thus, we seek values of λ for which $\det(A - \lambda I) = 0$ $det(A - \lambda I) = 0$ is called the characteristic equation of A.

Example 1

Consider the matrix

$$A = \begin{bmatrix} 1 & 6 \\ 1 & -4 \end{bmatrix}$$

a) Find the eigenvalues of \boldsymbol{A}

Finding Eigenvectors

The eigenvalue-eigenvector equation $A{f v}=\lambda {f v}$ is equivalent to $(A-\lambda I){f v}={f 0}.$

Once we know an eigenvalue λ of A, we can plug λ into $(A-\lambda I){\bf v}={\bf 0}$ and use row operations to solve for a corresponding eigenvector ${\bf v}$.

Example 1 (continued)

Consider the matrix

$$A = \begin{bmatrix} 1 & 6 \\ 1 & -4 \end{bmatrix}$$

- b) Find an eigenvector of \boldsymbol{A} corresponding to $\lambda_1=-5$.
- c) Find an eigenvector of A corresponding to $\lambda_2=2$.
- d) State two solutions to the linear system $\mathbf{x}' = A\mathbf{x}$.

Solving $\mathbf{x}' = A\mathbf{x}$ with n Linearly Independent Eigenvectors If the $n \times n$ constant matrix A has n real eigenvalues $\lambda_1, \ldots, \lambda_n$ with corresponding eigenvectors v_1,\dots,v_n and the eigenvectors v_1,\dots,v_n form a linearly independent set, then the general solution of $\mathbf{x}' = A\mathbf{x}$ is $\mathbf{x} = c_1 e^{\lambda_1 t} \mathbf{v}_1 + \dots + c_n e^{\lambda_n t} \mathbf{v}_n$ where c_1, \dots, c_n are scalars. Theorem If $\lambda_1,\ldots,\lambda_m$ are distinct eigenvalues of the matrix A with corresponding eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_m,$ then $\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ is a linearly independent set. Example 1 (continued) Consider the matrix $A = \begin{bmatrix} 1 & 6 \\ 1 & -4 \end{bmatrix}$ e) State the general solution of the linear system $\mathbf{x}' = A\mathbf{x}$.

Example 2

Consider the matrix

$$A = \begin{bmatrix} 1 & -2 & 0 \\ -2 & -3 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

- a) Find the eigenvalues and eigenvectors of \boldsymbol{A} .
- b) Find a general solution of the system $\mathbf{x}' = A\mathbf{x}$.

Consider the matrix

$$A = \begin{bmatrix} 2 & 4 & -2 \\ 2 & 0 & -1 \\ 4 & 4 & -4 \end{bmatrix}$$

- a) Given that the characteristic equation of \boldsymbol{A} is $(2-\lambda)(2+\lambda)^2=0$, find its eigenvalues and eigenvectors.
- b) Find a general solution of the system $\mathbf{x}' = A\mathbf{x}$.