Set	MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY	Founded 1870 Holla, Messouri
	Section 9.6	
	366.6.1.3.6	
	Complex Eigenvalues	

Goals for Today

In this section, we will explore the solutions of homogeneous linear systems of the form

$$\mathbf{x}' = A\mathbf{x}$$

where A is an $n\times n$ constant matrix with all real entries and complex eigenvalues.

Recall: Solving $\mathbf{x}' = A\mathbf{x}$

 ${f x}'=A{f x}$ with A constant has solutions of the form ${f x}=e^{\lambda t}{f v}$

where λ is an eigenvalue of A with corresponding eigenvector ${\bf v}.$

Recall: Complex Roots of the Auxiliary Equation Consider the differential equation ay'' + by' + cy = 0. If its auxiliary equation $ar^2 + br + c = 0$ has complex roots $r=\lambda\pm\mu i$, then $y_1 = e^{\lambda t} \cos(\mu t)$ and $y_2 = e^{\lambda t} \sin(\mu t)$ are linearly independent real solutions of the DE. Matrices with Complex Eigenvalues Let A be an $n \times n$ matrix whose entries are real, and let $\lambda_1 = \alpha + \beta i$ be an eigenvalue of A with corresponding eigenvector $\mathbf{v}_1 = \mathbf{a} + i\mathbf{b}$. Then, $\lambda_2 = \alpha - \beta i$ is also an eigenvalue of A with corresponding eigenvector $\mathbf{v}_2 = \mathbf{a} - i\mathbf{b}$. Solving $\mathbf{x}' = A\mathbf{x}$ with Complex Eigenvalues Let A be an $n \times n$ matrix whose entries are real. If $\lambda_1 = \alpha + \beta i$ is an eigenvalue of A with corresponding eigenvector $\mathbf{v_1} = \mathbf{a} + i\mathbf{b}$, then two linearly independent real solutions to $\mathbf{x}' = A\mathbf{x}$ are $\mathbf{x}_1 = e^{\alpha t} \cos(\beta t) \mathbf{a} - e^{\alpha t} \sin(\beta t) \mathbf{b}$ $\mathbf{x}_2 = e^{\alpha t} \sin(\beta t) \mathbf{a} + e^{\alpha t} \cos(\beta t) \mathbf{b}$

Example 1

Consider the matrix $A = \begin{bmatrix} -3 & 2 \\ -5 & -1 \end{bmatrix}$.

- a) Find the eigenvalues and eigenvectors of $\boldsymbol{A}.$
- b) Find a general solution of the system $\mathbf{x}' = A\mathbf{x}$.
- c) Find a fundamental matrix for the system $\mathbf{x}' = A\mathbf{x}$.

Example 2

Find the solution to the given initial value problem.
$$\mathbf{x}' = \begin{bmatrix} -3 & -1 \\ 2 & -1 \end{bmatrix} \mathbf{x}, \qquad \mathbf{x}(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$