- 28. Prove that $\mathcal{B}(\mathcal{X}, \mathcal{Y})$ is a Banach space whenever \mathcal{Y} is one (i.e., prove Theorem 1.37).
- 29. Let K be a convex set in a real normed vector space \mathcal{X} . The functional $h(f) = \sup\{f(x) : x \in K\}$ defined on \mathcal{X}^* is called the *support functional* of K.
 - (a) Show that h is sublinear.
 - (b) Show that h is convex.
 - (c) Calculate h if $\mathcal{X} = \mathbb{R}^n$ and $K = [-1, 1]^n$.
 - (d) Calculate h if $\mathcal{X} = \mathbb{R}^n$ and K the ball around x_0 with radius k.
 - (e) If $K \subset \mathbb{R}^n$ is compact, show that h is bounded and that $h(f) = f(\tilde{x})$ for some $\tilde{x} \in \partial K$.
- 30. Let \mathcal{X} be a nontrivial linear space and let $x \in \mathcal{X}$. Put $\mathcal{M} = \langle x \rangle$, $f(\alpha x) = \alpha$ for $\alpha x \in \mathcal{M}$, and $\mathcal{F} = \{(\tilde{\mathcal{M}}, \tilde{f}) : \tilde{\mathcal{M}} \text{ is a subspace of } \mathcal{X}, \mathcal{M} \subset \tilde{\mathcal{M}}, \tilde{f} \text{ is a linear functional on } \tilde{\mathcal{M}}, \tilde{f}|_{\mathcal{M}} = f\}.$

Partially order \mathcal{F} and show that Zorn's Lemma applies to give a maximal element. Conclude that there exists a nontrivial linear functional on \mathcal{X} .

- 31. Finish the proof of the Hahn-Banach Theorem by invoking Zorn's Lemma as indicated in the lecture (i.e., finish the proof of Theorem 2.4).
- 32. A normed space X is called *strictly convex* if ||x|| = ||y|| = 1 for $x, y \in X$ with $x \neq y$ and $0 < \lambda < 1$ implies $||\lambda x + (1 \lambda)y|| < 1$.
 - (a) Let \mathcal{X} be a normed space and suppose that the unit ball of \mathcal{X}^* is strictly convex. Show that then all Hahn-Banach extensions (in the sense of Theorem 2.7) are unique.
 - (b) Show that the unit ball of $L^2(\Omega, \mu)$ (with $||f|| = \sqrt{\int_{\Omega} |f|^2 d\mu}$) is strictly convex.
- 33. Let \mathcal{M} be a subspace of a normed space \mathcal{X} and define $\mathcal{M}^{\perp} = \{ f \in \mathcal{X}^* : f(x) = 0 \text{ for all } x \in \mathcal{M} \}$. Prove that $x \in \overline{\mathcal{M}}$ if and only if f(x) = 0 for all $f \in \mathcal{M}^{\perp}$.
- 34. Let \mathcal{X} be a normed space and let $x \in \mathcal{X}$. Define $\hat{x}(\varphi) = \varphi(x)$ for all $\varphi \in \mathcal{X}^*$. Show the following:
 - (a) $\hat{x} \in \mathcal{X}^{**}$;
 - (b) $\tilde{\varphi}(x) = \|\tilde{\varphi}\| \|x\|$ for some $\tilde{\varphi} \in \mathcal{X}^*$;
 - (c) $\|\hat{x}\| = \|x\|$.
- 35. Let \mathcal{M} be a subspace of a normed space \mathcal{X} and let $F \in \mathcal{X}^*$. Show that

$$\sup\{|F(x)|: x \in \mathcal{M}, ||x|| \le 1\} = \inf\{||F + h||: h \in \mathcal{M}^{\perp}\} = \min\{||F + h||: h \in \mathcal{M}^{\perp}\}.$$

- 36. Calculate $\inf_{c \in \mathbb{R}} \sup_{\binom{x_1}{x_2} \in \mathbb{R}^2 \setminus \{0\}} \frac{|x_1 + x_2 c(x_1 x_2)|}{\sqrt{x_1^2 + x_2^2}}$
 - (a) directly, and
 - (b) by applying the previous exercise.