- 54. Let A be a bounded linear operator acting between two real Hilbert spaces. Show the following relations:
 - (a) $[\operatorname{Im}(A)]^{\perp} = \operatorname{Ker}(A^*)$ and $\overline{\operatorname{Im}(A)} = [\operatorname{Ker}(A^*)]^{\perp}$;
 - (b) $[\operatorname{Im}(A^*)]^{\perp} = \operatorname{Ker}(A)$ and $\overline{\operatorname{Im}(A^*)} = [\operatorname{Ker}(A)]^{\perp}$.
- 55. Let A be a bounded linear operator acting between two real Hilbert spaces. Assume that Im(A) is closed and show that among all vectors x_1 satisfying $||Ax_1 y|| = \min_x ||Ax y||$ there is a unique vector x_0 of minimum norm. The Moore-Penrose Inverse A^{\dagger} of A is the operator mapping y into its corresponding x_0 . Show the following:
 - (a) A^{\dagger} is linear and bounded;
 - (b) $A^{\dagger}A$ and AA^{\dagger} are both self-adjoint;
 - (c) $AA^{\dagger}A = A$ and $A^{\dagger}AA^{\dagger} = A^{\dagger}$.
- 56. Let A be a bounded linear operator acting between two real Hilbert spaces. Assume that $\operatorname{Im}(A)$ is closed and prove that $A^{\dagger} = \lim_{\varepsilon \to 0^+} (A^*A + \varepsilon I)^{-1}A^* = \lim_{\varepsilon \to 0^+} A^*(AA^* + \varepsilon I)^{-1}$ holds. Use this

formula to calculate the Moore-Penrose inverses of $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$.

- 57. (a) Let r and p be given real valued functions on I = [0,1]. Let \mathcal{A} be the set of all twice differentiable real functions y on I such that y(0) = y(1) = 0. Find an operator L such that $\int_0^1 (py^2 + r\dot{y}^2)(t) dt = \langle Ly, y \rangle$ for all $y \in \mathcal{A}$.
 - (b) Let r and p be given sequences on $I = \{0, 1, ..., N\}$. Let \mathcal{A} be the set of all real sequences on I such that $y_0 = y_N = 0$. Find an operator L such that $\sum_{n=0}^{N-1} \{p_n y_{n+1}^2 + r_n(\Delta y_n)^2\} = \langle Ly, y \rangle$ for all $y \in \mathcal{A}$.
 - (c) Let A, B, and C be real square matrix valued functions on I = [0, 1] such that B and C are self-adjoint. Let A be the set of all differentiable real vector valued functions x on the interval I = [0, 1] such that x(0) = x(1) = 0 and such that there exists a u with $\dot{x} = Ax + Bu$. Find an operator L such that $\int_0^1 (x^T Cx + u^T Bu)(t) dt = \langle Lx, x \rangle$ for all $x \in A$.
 - (d) Create a discrete analogue problem to (c) and solve it.
- 58. Let α be a complex sequence and define A by $A(x_1, x_2, \dots) = (\alpha_1 x_1, \alpha_2 x_2, \dots)$. Characterize the sequences α that guarantee $A: l^2 \to l^2$, A self-adjoint, normal, compact, and invertible. Find the spectrum of A.
- 59. Read Section II.6 of the textbook and work on all exercises there.
- 60. Read the notes on "Approximation by analytic functions" and work on as many exercises you like (at least one).
- 61. Read the "Afterword" to the book "An Introduction to Hilbert Space" by N. Young.