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CHAPTER 1
Banach Spaces

1.1. Normed Linear Spaces

DEeFINITION 1.1. If X is a vector space over I, a norm is a function
||| - X = [0, 00) having the properties:

(a) z=0if ||lz]| = 0;

(b) ||az|| = |«|||z|| for all « € F and x € X;

(©) llz+yll < llzll + llyll for all z,y € X

A normed linear space (or short: normed space) is a pair (X, ]| - ||),
where X is a vector space and || - || is a norm on X.

LEMMA 1.2. If X is a normed space, then

(@) [| = 2l = ||=]| for all z € X;
(b) Hlzll = lylll < llz =yl for all z,y € X.

ExXAMPLE 1.3.  (a) Cla,b] with ||z|| = ||7||c = maxycap [2(2)];
(b) C'[a, ] with [[o]| = maxiejog (1) + masica s [£(0)]
(c) Cla,b] with lz]| = [ |2 ()|d;
(d) BVla,b] with ||z|| = |z(a)| + V?(z).

DEFINITION 1.4. A metric on a set X is a function d : X x X — R
that satisfies for all x,y, z € X all of the following:

(a) d(z,y) > 0 and d(z,y) =0 iff z = y;

(b) d(z,y) = d(y, x);
(c) d(z,y) < d(z,2) +d(2,y).

The pair (X, d) is then called a metric space.
EXAMPLE 1.5. The following are all metrics in R?:

(a) euclidean metric;
(b) American city metric;
(c) French railroad metric.

LEMMA 1.6. If (X, || -||) is a normed space, then (X,d) with d defined
by d(z,y) = ||z — y|| is a metric space.
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2 1. BANACH SPACES

DEFINITION 1.7. Let (X,d) be a metric space. The sequence {z,}
converges to x provided d(z,,x) — 0 as n — oo. We write z,, — .

LEMMA 1.8. Let {z,} be a sequence in a normed space (X, || - ||)-

(a) If z, — z, then ||z,|| — ||z|| as n — oo;
(b) If {z,} converges, then the limit is unique.

DEFINITION 1.9. Let (X,]| - |lx) and (), ]| - ||)) be normed spaces. A
mapping 7 : X — ) is called continuous at o € X if for every ¢ > 0
there exists 0 > 0 such that ||z —x||x < 0 implies ||T(x)—T (zo)||y < e.

LEMMA 1.10. A mapping T from a normed space X into a normed
space Y is continuous at xo € X if and only if x, — xo implies T (x,) —
T(xo) as n — oo.

DEFINITION 1.11. Let (X, d) be a metric space. The sequence {z,} is
said to to be Cauchy provided d(z,,z,) — 0 as n,m — oc.

LEMMA 1.12. Consider a normed space.

(a) Every convergent sequence is Cauchy.
(b) Every Cauchy sequence is bounded.

DEFINITION 1.13. A metric space is called complete if every Cauchy
sequence in it has a limit in it. A complete normed linear space is
called a Banach space.

ExamPLE 1.14. (a) (R,|-|) is a Banach space.
(b) Consider C[0,1] with ||z|| = fol |z(t)|d¢t. The sequence {z,} in
C10, 1] defined by

0 for0<t<;—1
To(t)=dnt—52+1 for%—%ﬁtﬁ%
1 fortzé
is Cauchy because of ||z, — zn|| = 3|2 — =/, but it is not con-

vergent.
(c) Let Iy = {x = {&,} : there exists N with &, =0 for all n > N},
and define a norm by ||z|| = max,en |€,|. Define a sequence {z, }

inloby
11 1
S=d1,22....2.00,... %,
v {23 n }

The sequence is Cauchy because of ||z, —z,,| = max{
but it is not convergent.
(d) (C[0,1],] - |leo) is & Banach space.

o1
n+1? m+1727



1.2. L AND HARDY SPACES 3

(e) For 1 < p < oo, (I7,| - ||) is a Banach space, where [P consists

1
of all sequences z = (&) with [|z]l, = {3,y [&[P}? < oc.
(f) (1°°,]|- |loo) is a Banach space, where [* consists of all sequences

T = (&) with ||z]|e = supgen [&k| < 0.
DEFINITION 1.15. Let (X, d) be a metric space and suppose P C X.

(a) The point p € P is called an interior point of P if there is an
e > 0 such that all z € X with d(z,p) < e are elements of P.
The collection of all interior points of P is denoted by ](5 P is

called open if P :]%.

(b) The point z € X is called a closure point of P if for all ¢ > 0
there is a point p € P satisfying d(z, p) < €. The collection of all
closure points of P is denoted by P. P is called closed if P = P.

LEMMA 1.16. A subset P of a metric space is closed if and only if
every convergent sequence with elements in P has its limit in P.

THEOREM 1.17. Let B be a Banach space and suppose X C B. Then
X is a Banach space if and only if X is closed.

DEFINITION 1.18. A series {}_;_, 2} in a normed space is called ab-
solutely convergent provided Y [|za] < oo.

THEOREM 1.19. A normed space is complete if and only if every ab-
solutely convergent series in it has a limit in .

1.2. I? and Hardy Spaces

Let (X, €, u) be a measure space. Define for 0 < p < oo

1

11, ={ [ 17van}”

and let L# = L(X, u) = {f : |Ifll, < oo}.

LEMMA 1.20 (Arithmetic-Geometric Mean Inequality). Ifa,b > 0 and
0 <A<, then a*b'* < Aa+ (1 — \)b.
THEOREM 1.21 (Holder and Minkowski). Let p > 1. Then

(a) If f € L? and g € L9, where ;—)—i—% =1, then fg € L' and

J1fgldu <11 fllpllglle;
(b) If f,g € L, then f +g € L? and ||f + gll, < lFll, + llgll,-

REMARK 1.22. Two numbers p,q > 1 which satisfy % + % = 1 are
called conjugate exponents.



4 1. BANACH SPACES

THEOREM 1.23. Suppose 1 < p < oo. Then (L?,|| - ||,) is a Banach
space.

DEFINITION 1.24. The essential sup norm is defined by

[fllo = inf{a: p({z: |f(z)] > a}) =0}
The space L>® = {f : ||f]lcc < 00} is the set of all essentially bounded
measurable functions.

ExAMPLE 1.25. (a) Let

{1—t2 te[-1,1]\ {0}

H0=12 t=0.

Then |||l = 1.
(b) Let f be the characteristic function of the set Q. Then || f||o = 0.

REMARK 1.26. With the notation from Definition 1.24, Theorem 1.23
holds also for p = oc.

To consider another example of a Banach space, let A denote the unit
disc {z € C: |z] < 1}, and 0A = {2z € C: |z] = 1}. Consider
functions f € LP(0A), for example

f(eia) — ew or f(ew) — Z akeikH‘
k=—n

The nth Fourier coefficient of f is defined by
; L (27 ey —ing
- (3 —n de-
fo =5 [ e

[For example, if f(e?) = ¢, then f(1) =1 and f(n) = 0 for all other
n.] The Fourier series associated with f is
£ fmem.
neZ
DEFINITION 1.27. Let p > 1. The Hardy Space H? is defined by

H? = HP(9A) = {f € LP(9A) : f(-N) = {o}}.

REMARK 1.28. The Hardy space HP consists of those functions in
LP(0A) whose negative Fourier coefficients all vanish. So the Fourier

series for f € HP looks as f ~ > >, f (n)e™™®. We identify this series
with 3°°° | f(n)z" where z € DA.

EXAMPLE 1.29. The function f defined by f(e) = e=* is not an
element of H? since f(—1) = 1.
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THEOREM 1.30. Suppose 1 < p < oo. Then (H?,|| - |,) is a Banach
space.

1.3. Linear Operators

DEerINITION 1.31. Let X, Y be vector spaces. A mapping L: X —Y
is called a linear operator if it satisfies

Loz +y) =aL(z)+ L(y) forall z,yeX, ael.
If Y =T, then a linear operator is called a linear functional.

ExAMPLE 1.32. (a) Let L : ¢ — R be defined by L(z) = lim,_,«,
where z = (§,) € c. Then L is linear.
(b) Let A be an m X n-matrix with real entries. Then L : R™ — R"
defined by L(z) = Az for all x € R™ is a linear operator.

DEFINITION 1.33. Let (X,| - ||x) and (),]| - ||y) be normed linear
spaces. Suppose that L : X — ) is a linear operator. Then

1Lz]ly

Ll =
IE sex\{oy [|Z]lx

is called the norm of the operator L. L is said to be bounded provided
||IL|| < co. The collection of all bounded linear operators from X" into
Y is denoted by B(X,Y). The set X* = B(X,F) is called the dual

space of X.

THEOREM 1.34. With the notation from Def. 1.33, (B(X,Y),|| - ||) is
a normed linear space.

ExAaMPLE 1.35. (a) For L : ¢ — R defined by L(z) = lim, 0 2y
for x = (z,) € ¢ we have | L|| = 1.

(b) For L : C[0,a] — C[0,b] defined by (Lz)(s) = s [, z(t)dt for all
x € C|0,a] we have ||L|| = ab.

(c) Let X =Y = L'(R), g € X, and define L, : X — Y by
(Lg(F))() = [0 g(t — s)f(s)ds. Then Ly is a linear operator.
L, is bounded because of ||Ly(f)|l1 < || f|l1]lg]l:-

(d) Let p and ¢ be conjugate exponents. Fix g € L? = LI(X, ) and
define Ly : LP — C by Ly(f) = [, fgdp. Then L, is a linear
functional. L, is bounded because of |L,(f)| < || fllpllglly- In
fact, |||l = [l

(e) Let P be the set of polynomials (as a subset of (C[0,1], || - ||co)),
and define D : P — P by D(f) = f'. Then D is a linear operator
but not bounded.

THEOREM 1.36. Let X and Y be normed linear spaces and L : X — Y
be a linear operator. Then the following statements are equivalent:
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(a) L is bounded;
(b) L is continuous;
(c) L is continuous at one point.

THEOREM 1.37. Let X and Y be normed linear spaces. If Y is a
Banach space, then so is B(X,)).

COROLLARY 1.38. Let X be a normed linear space. Then X* is a
Banach space.

ExXAMPLE 1.39 (The Dual of I'). The space (I')* consists exactly of
all functionals f defined by f(z) = Y, .y Cn%n, Where z = {z,} € I!
and ¢ = {c,} € [*°. Also, this relation implies || f|| = ||¢/|co-

THEOREM 1.40. Let ¢ be a linear functional on a normed space. Then
© 1s continuous if and only if Keryp is closed.

THEOREM 1.41. (a) All finite dimensional subspaces of a normed
space are complete (and hence closed);
(b) All linear functionals on a finite dimensional normed space are
continuous.



CHAPTER 2

The Basic Principles

2.1. The Hahn—Banach Theorem

DEFINITION 2.1. Let X be a nonempty set. A partial ordering on X
is a relationship “<” so that for all z,y, z each of the following holds:

(a) © <
(b) <y andy <z imply z = y;
(c) z<yand y < zimply z < z.

An element y € X with y < z for all z € E (where £ C X) is called a
lower bound of E. An element y € X that satisfies x =y for all x € X
with z < y is called a minimal element of X. A subset E of X is said
to be linearly ordered if for each two elements x,y € E we have either
z<yory<z.

LEMMA 2.2 (Zorn’s Lemma). Let X be a partially ordered set such
that every linearly ordered subset of X has an upper bound in X. Then
X has a mazimal element.

DEFINITION 2.3. Let X be a real vector space. A sublinear functional
is a mapping p : X — R such that the following holds:

(a) p(x+y) < p(x) + p(y) for all z,y € X;
(b) p(ax) = ap(zx) for all x € X and all a > 0.

THEOREM 2.4 (Hahn-Banach Theorem, Real Version). Let X be a real
vector space, p a sublinear functional on X, M a subspace of X, and f
a linear functional on M such that f(x) < p(z) for all x € M. Then
there exists a linear functional F' on X such that F(x) < p(zx) for all
x € X and F(z) = f(z) for all x € M.

DEFINITION 2.5. If X is a vector space over I, a seminorm is a func-
tion p : X — [0, 00) having the properties:

(a) p(x) >0 for all z € X
(b) p(azx) = |a|p(z) for all & € F and z € X;
(¢) p(z +y) <p(z) +p(y) for all 2,y € X.

7



8 2. THE BASIC PRINCIPLES

THEOREM 2.6 (Hahn-Banach Theorem). Let X' be a vector space, p
a seminorm on X, M a subspace of X, and f a linear functional
on M such that |f(x)| < p(x) for all x € M. Then there exists a
linear functional F' on X such that |F(x)| < p(z) for all x € X and
F(z) = f(x) for all x € M.

THEOREM 2.7 (Hahn-Banach Theorem). Let X be a normed linear
space, M a subspace of X, and f a bounded linear functional on M.
Then there exists a bounded linear functional F on X with || F|| = || f||
and F(z) = f(z) for all x € M.

THEOREM 2.8 (Separation Theorem). Let X be a normed linear space,
M a subspace of X, and z € X with § = infyep ||x—2|| > 0. Then there
exists a bounded linear functional F on X that satisfies F(M) = {0},
F(z) =4, and ||F|| = 1.

COROLLARY 2.9. Let X be a normed linear space and xy € X \ {0}.

Then there exists a bounded linear functional F' on X with F(xq) =
[zo]| and ||| = 1.

COROLLARY 2.10. Let X be a normed linear space. Then X* separates
points of X (i.e., for x,y € X, x # y, there exists f € X* such that

f(x) # f(y)).

2.2. The Uniform Boundedness Principle

DEFINITION 2.11. A subset E of a metric space is called dense if £ =

o
X and nowhere dense if E= (). X is said to be of first category if it is
the countable union of nowhere dense sets; otherwise, X is said to be
of second category.

THEOREM 2.12 (Baire Category Theorem). Let X be a complete met-
ric space.

(a) If {U, }nen is a sequence of open dense subsets of X, then NpenU,
s dense in X.
(b) X is not a countable union of nowhere dense sets.

[“A complete metric space is of second category.”]

THEOREM 2.13 (Uniform Boundedness Principle). Let X be a Banach
space and let Y be a normed linear space. Let {Ly}acr be a collection
of bounded linear operators L, : X — Y. If sup,c; || La(x)| < 00 for
all z € X, then sup,c; ||La|| < 00. [“Pointwise boundedness implies
uniform boundedness.”]
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THEOREM 2.14 (Banach-Steinhaus Theorem). Let X' be a Banach space
and let Y be a normed linear space. Let L, : X — Y be bounded linear
operators for all n € N. If lim,,_,o, L,(z) exists for each x € X, then
L(z) = lim,,o Ly, () defines a bounded linear operator from X to Y.

2.3. The Open Mapping and Closed Graph Theorems

DEFINITION 2.15. A linear map L : X — ) is called open if L(U) is
open in Y for each set U which is open in X.

THEOREM 2.16 (Open Mapping Theorem). Let X, Y be Banach spaces
and suppose that L : X — Y is a bounded linear operator that is onto
(i.e., L(X) =)). Then L is an open mapping.

THEOREM 2.17 (Banach Inverse Theorem). Let X', Y be Banach spaces
and suppose that L : X — Y is a bounded, bijective, linear operator.
Then L has a bounded inverse.

DEFINITION 2.18. The graph I' of a linear map L : X — Y is defined
tobe I'(L) = {(z,L(z)) : x € X} C X xY. We say that L is closed if
it has a closed graph.

ExAMPLE 2.19. If f is continuous, then I'(f) is closed.

THEOREM 2.20 (Closed Graph Theorem). Let X, Y be Banach spaces
and suppose that L : X — Y s a linear operator. If the graph of L is
closed in X x Y, then L is continuous.
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CHAPTER 3

Hilbert Spaces

3.1. Inner Product Spaces

DEFINITION 3.1. Let H be a vector space. An inner product on H is
a mapping (-,-) : H?> — F with

(a) (2,9) = (5,3) for all 2,y € H.
(b) (z+y,2) =(z,2) + (y,2) for all z,y,2 € H;
(c) {az,y) = a{z,y) for all z,y € H and a € T;
(d) {(z,z) > 0; (z,z) =0iff z = 0.
H (together with (-,-)) is then called an inner product space.

EXAMPLE 3.2. (a) (f,g9) = [, fgdp defines an inner product on
L*(Q, ).
(b) (@,y) = ,cnTn¥n defines an inner product on 2.
THEOREM 3.3 (Cauchy-Schwarz Inequality). Let H be an inner prod-

uct space. Then |{(z,y)|* < (z,z) (y,y) for all z,y € H. Moreover,
equality occurs iff y = 0 or x = Ay for some constant \.

COROLLARY 3.4. If H (together with (-,-)) is an inner product space,
then ||z|| = v/{(x,x) defines a norm on H.

DEFINITION 3.5. A complete inner product space is called a Hilbert
space.

THEOREM 3.6. Let E be a nonempty, closed, and conver subset of a
Hilbert space. Then E contains a unique element of least norm.

REMARK 3.7. Let H be a Hilbert Space. For each fixed z € H, define
©.(x) = (x,2) for all x € H. Then ¢, € H*. We will see later
that all ¢ € H* arise this way (Riesz Representation Theorem), so
we will write H* = H (H is self-dual and reflexive). We also write
Et={yeH: (z,y)=0forallz € E} for E C H. If (z,y) = 0,
then we write z L y. If x € E+, we also write z 1 E.

THEOREM 3.8 (Projection Theorem). Suppose M be a closed subspace
of a Hilbert space H. Let h € H. If fy is the unique element of M
such that d(h, M) = d(h, fo), then h— fo L M. Conversely, if fo € M
with h — fo L M, then d(h, M) = d(h, fo).

11



12 3. HILBERT SPACES

DEFINITION 3.9. Let M and A be two subspaces of H such that MnN
N = {0} and such that each x € H can be written as z = x5 + zy for
Zy € M and zx € N. Then H is said to be the orthogonal direct sum
of M and N. We write H = M O N.

THEOREM 3.10. Let H be a Hilbert space and M a nonempty closed
subspace of H. Then H = M & M+,

REMARK 3.11. According to the previous theorem, for each h € H
there are unique Ph € M and g € Mt with h = Ph + q. This defines
an operator P : H — H, which is called the orthogonal projection of h
onto M. It is easy to show that P is a bounded linear projection with
1Pl =1.

THEOREM 3.12 (Riesz Representation Theorem). Let H be a Hilbert

space and let f € H*. Then there exists a unique z € H such that
f(z) =z, z) for all x € H. Moreover ||z|| = || f]|-

DEFINITION 3.13. An orthonormal subset of a Hilbert space H is a
subset E having the properties

(a) |le|| =1 for all e € E;
(b) €1 1 €9 for all €1,69 € FE with €1 ?é €9.

EXAMPLE 3.14. (a) For # = F", the n kth unit vectors in F” form
an orthonormal subset of H.

(b) For H = L?[0,2x], the functions e,, defined by e, (t) = \/%ei”t
form an orthonormal subset of H.
LEMMA 3.15. Let{ey,...,e,} be an orthonormal set in a Hilbert space

H and let M = (eq,...,e,). If P is the orthogonal projection of H
onto M, then Ph=Y",_, (h,ex) ey for all h € H.

THEOREM 3.16 (Bessel’s Inequality). If {e, : n € N} is an orthonor-
mal set and h € H, then Y, | (h, en) [> < ||A]%

DEFINITION 3.17. An orthonormal set in a Hilbert space is called com-
plete if the only vector which is orthogonal to every member of the set
is the zero vector.

THEOREM 3.18. Let {e, : n € N} be a complete orthonormal set in a
Hilbert space . Thenz =Y, (2, en) e, and ||z]> =3, x| (2, en) |
forall z € H.

3.2. Adjoint Operators

THEOREM 3.19. Let H1 and Ho be Hilbert spaces and let A € B(H1, Ha).
Then there exists a unique A* € B(Hz, H1) such that (Ax,y) = (x, A*y)
for all x € Hi and y € Hs.
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DEFINITION 3.20. The operator A* from Theorem 3.19 is called the
adjoint of A. If A* = A, then we call A self-adjoint (or Hermitian). If
A*A = AA*, then we call A normal. If A*A = AA* = I, then we call
A normal.

EXAMPLE 3.21. (a) If A is a square matrix with complex entries,
then A* = AT,
(b) Fix ¢ € L*®(u). If My : L*(pu) — L?(p) is defined by My(f) =
¢f, then Mg = Mj.
(¢) If V : L2([0,1]) — L2([0, 1]) is deﬁned by (V) =[] f@)dt,
then V* is given by (V*g) ft

REMARK 3.22. (a) A=A and |A*|| = ||A||.
(b) (al)* = al, where I is the identity operator.
(c) (AB)* = B*A*.

(d) (Im A)* = Ker A*.

THEOREM 3.23. Let H be a Hilbert space and A € B(H,H). Then

(a) |14l = SUP||y|<1 SUP|4)<1 Re (Az,y),
(b) and, if A is self-adjoint, | A|| = sup, -, | (A7, 7) |.

COROLLARY 3.24. Let A be self-adjoint and suppose that (Ah,h) =0
holds for all h. Then A = 0.

LEMMA 3.25. An operator A on a Hilbert space is normal iff ||Ah|| =
|A*h|| holds for all h iff (provided F = C) the real and imaginary parts
of A (i.e., (A+ A*)/2 and (A — A*)/(2i), respectively) commute.

3.3. The Spectral Theorem

DEFINITION 3.26. Let A € B(H,H), where # is a Hilbert space. Then
0(A) ={A € C: A — A is not invertible} is called the spectrum of A.

REMARK 3.27. There are two ways for A to be in o(A): Either if
A — A is not onto, or if A\I — A is not one-to-one. The last case is
equivalent to the existence of an z € H \ {0} with (Al — A)z = 0,
i.e., Az = Ax. In this case we say that A is an eigenvalue of A with
corresponding eigenvector x.

THEOREM 3.28. Suppose A is a self-adjoint bounded operator on a
Hilbert space. Then all eigenvalues are real and eigenvectors corre-
sponding to distinct eigenvalues are orthogonal.

DEFINITION 3.29. Suppose X and Y are normed spaces and A : X —
Y is linear. Then A is said to be compact if the sequence {Azy }pen C Y
has a convergent subsequence in Y whenever {z, },en C X is a bounded
sequence in X.
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ExampPLE 3.30. (a) Compact operators are bounded.
(b) Bounded finite rank perators are compact.
(c) The identity operator on an infinite-dimensional Hilbert space is
not compact.

THEOREM 3.31. Let K be a compact Hermitian operator on a Hilbert
space. Then either ||K|| or —||K|| is an eigenvalue of K.

THEOREM 3.32. Let K be a compact Hermitian operator on a Hilbert
space. The set of eigenvalues of K is a set of real numbers which either
s finite or consists of a countable sequence tending to zero.

DEFINITION 3.33. A closed subspace M of a Hilbert space is said to
be invariant under a bounded linear operator 1" if (M) C M.

LEMMA 3.34. Let M be a closed linear subspace of a Hilbert space
which is invariant under a bounded linear operator T. Then M* is
invariant under T*.

THEOREM 3.35 (Spectral Theorem). Let K be a compact Hermitian
operator on a Hilbert spcae H. Then there exists a finite or infinite
orthonormal sequence {@,} of eigenvectors of K, with corresponding
eigenvectors {\,}, such that Kz = Y A, {(x,¢n) ¢n for all z € H.
The sequence {\,}, if infinite, tends to 0.

3.4. Weak Convergence

DEFINITION 3.36. Let {z,} C H. We say that z, converges to x
weakly and write x, — z if (z,,y) — (z,y) for all y € H.

REMARK 3.37. (a) If z, tends to x (strongly), then z, tends to x

weakly.
(b) The converse of (a) is not true. Example: H = L?(0A), fn(e%) =

ema_
c¢) Weak limits are unique.
(c) q
d) Weakly convergent sequences are bounded.
g

LEMMA 3.38. Let A € B(H,H). If x, — x, then Az, — Ax.

DEFINITION 3.39 (Hilbert’s Original Definition). A bounded linear op-
erator on a Hilbert space is compact if it sends weakly convergent se-
quences to strongly convergent sequences.

ExaMPLE 3.40. The Volterra operator is compact.

THEOREM 3.41. In Hilbert spaces the two definitions for compact op-
erators (Definition 3.29 and Definition 8.39) are equivalent.
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THEOREM 3.42 (Banach-Alaoglu for Hilbert Spaces). All bounded se-
quences contain a weakly convergent subsequence.

DEFINITION 3.43. A set is called weakly compact if each sequence in
the set contains a weakly convergent sequence whose limit is in the set.

COROLLARY 3.44. Let H be a Hilbert space. The closed unit ball {z €
H: ||z|| <1} is weakly compact.
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CHAPTER 4
Banach Algebras and Spectral Theory

4.1. Algebras and Ideals

DEFINITION 4.1.  (a) An algebra over F is a vector space A over F
that has a multiplication defined on it that makes A into a ring
such that if o € F and a,b € A, a(ab) = (aa)b = a(ab).

(b) If A is an algebra, a right ideal of A is a subalgebra M of A
such that za € M whenever a € A and x € M. Left ideals and
(bilateral) ideals are defined accordingly. A mazimal ideal is a
proper ideal that is contained in no larger proper ideal.

DEFINITION 4.2. A Banach algebra is an algebra A over F that has
a norm || - || relative to which A is a Banach space and such that
lab]| < ||a||||b]| holds for all a,b € A. Moreover, A is called unital
provided it has an identity 1 with ||1|| = 1.

LEMMA 4.3. If A is a Banach algebra without an identity, define alge-
braic operations on A = AxF as follows: (a, )+ (b, B) = (a+b, a+p),
B(a, o) = (Ba, Ba), (a,a)(b, ) = (ab+ab+Pa, o). Then A is isomet-
rically isomorphic to A, and A is a unital Banach algebra with identity
(0,1), where ||(a, )| = [la]l + |e.

EXAMPLE 4.4. (a) If X is compact, then C'(X) is a Banach algebra.
(b) If X is a Banach space, then B(X, X) is a Banach algebra (with
multiplication defined by composition).

THEOREM 4.5. The compact operators on a Hilbert space form a Ba-
nach algebra. More precisely, they form an ideal in the Banach algebra
consisting of all bounded linear operators on the space.

COROLLARY 4.6. If A, — A (all bounded linear operators on a Hilbert
space) and A, are compact, then so is A.

THEOREM 4.7. Let A be a unital Banach algebra. If v € A with ||z —
1]| < 1, then x is invertible.

THEOREM 4.8. Let A be a unital Banach algebra. The set of all left
invertible elements of A is an open subset of A (and so are the set of

17
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all right invertible elements and the set G of all invertible elements).
Moreover, the map ¢ : G — G defined by ¢(a) = a™! is continuous.

COROLLARY 4.9. In a unital Banach algebra we have

@) a1l <1 = a™' =332,(1—a)
(b) boag =1 and ||a — ao|| < ||bol| > = a is left invertible.

THEOREM 4.10. In a unital Banach algebra we have

(a) the closure of a proper left (or right or bilateral) ideal is a proper
left (or right or bilateral) ideal;
(b) a mazimal left (or right or bilateral) ideal is closed.

THEOREM 4.11. Let A be a Banach algebra. If M is a proper closed
ideal in A, then AJM is a Banach algebra. If A is unital, then so is
A/ M.

4.2. The Spectrum and the Resolvent Set

LEMMA 4.12. Let o € F and a be in a unital Banach algebra. Then

(a) If || > |lall, then a—« is invertible, and (a—a)™" =>4, a%—il;
(b) If a — « is not invertible, then |a| < ||al|.

DEFINITION 4.13. Let A be a unital Banach algebra, and suppose
a€ A

(a) The spectrum of a is defined by o(a) = {a € F : a—« is not invertible}.
The left spectrum and the right spectrum are defined accordingly.

(b) The resolvent set of a is defined by p(a) = F\ o(a). The left and
right resolvents are defined accordingly.

ExAMPLE 4.14. (a) Let X be compact. We have o(f) = f(X) for
all f € C(X).
(b) Let X be a Banach space. We have o(A) = {a € F: Ker(A —
a) # {0} or Im(A —a) # X} forall A € B(X,X).
(c) Let H be a Hilbert space. We have 0(A) = {a € F: inf{||(A —
a)h| . ||h|| =1} =0} for all A € B(H,H).
(d) Let A be the set of all 2 x 2-matrices with real entries. Then
A= (? _01) € A has o(A) = 0.
LEMMA 4.15 (Resolvent Identity). Let A be a unital Banach algebra,
and define the mapping X — 1y := (A — z)~', where X € p(z), = € A.
Then ry —r,=—A = p)rar, = —(A = p)rura.
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THEOREM 4.16. Let A be a unital Banach algebra over C. Then o(a)
is a nonempty compact subset of C for each a € A. Moreover, F :
pla) — A defined by F(z) = (z —a)~! is an analytic function.

THEOREM 4.17 (Gelfand-Mazur). A unital Banach algebra over C, in
which every nonzero element has an inverse, is isometrically isomor-
phic to C. [“C is essentially the only division algebra.”]

DEFINITION 4.18. Let A be a unital Banach algebra over C. If a € A,
then the spectral radius of a is defined by r(a) = sup{|a|: « € o(a)}.

REMARK 4.19. The spectral radius is well-defined because of Theorem
4.16 and Lemma 4.12 (b).

EXAMPLE 4.20. Let A be the set of all 2 x 2-matrices with complex

entries. Then A = <(1) 8) € A has r(A) = 0.
THEOREM 4.21. Let A be a unital Banach algebra over C. If a € A,
then lim,,_,o, ||a”||*/™ ezists and is equal to r(a).

THEOREM 4.22. Let A be a unital Banach algebra over C. If a € A,
then d(a,0(a)) > ||(a —a) Y|t for all a € p(a).

THEOREM 4.23 (Spectral Mapping Theorem). Ifp: A — A is a poly-
nomial with complez coefficients, then o(p(z)) = p(o(x)) for each

z e A

4.3. The Riesz Functional Calculus

DEFINITION 4.24. Suppose X is a Banach space. Let f: G — X be
a function, where G C F is open and nonempty. We say that f is dif-
ferentiable in Ay € G with derivative f'(X\g) if limy_,,, ||%’;g)‘°) -
f'(Mo)|| = 0. Next, f is called weakly differentiable in Ny € G if

limy_,», <%§(ﬂ)‘°),y> exists for each y € X*. If f is differentiable

in each A € G, it is called locally holomorph, and if G is in addition a

domain, then f is called holomorph. If G = C in addition, then f is
called entire. Weak holomorphy is defined similarly.

REMARK 4.25. (a) If f is differentiable, it is weakly differentiable.
(b) If T is an integration path in C and X a complex Banach space,
and if f : T — X, then [.f(A\)d\ is definted as the limit of
Riemann sums Y f(&)(Ax — Ag—1)-
(c) We have ([, f(\)dA,y) = [ (f(A),y)dA for all y € X*.
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THEOREM 4.26 (Cauchy). Let X be a Banach space. If f : G — X
is holomorph in G and if I'y and T'y are two integration paths with the

same beginning and end points that can be transformed continuously
into each other, then [. f(A)dA= [. f(A)d\.

LEMMA 4.27. Let X be a Banach space. If (x,y) = (z,y) for all y €
X*, then x = z.

THEOREM 4.28 (Liouville). An entire and bounded function with val-
ues in a Banach space is constant.

THEOREM 4.29. Let X be a Banach space. If f : G — X is holomorph
or even only weakly holomorph, then f 18 arbztmmly often differentiable,
and the derivatives satisfy f™ (X ) o fr - )\)n+1 d¢ for n € Ny, where
[' is a single positively omentated integration path in G which circles
around X. Moreover, for each Ay € G, we can write f(X) = > 7, ar(A—
Xo)¥, and this series converges at least within the largest open circle
containing Ay which contains only points of G.

DEFINITION 4.30. Let X be a complex Banach algebra and =z € X.
A set B C C is called admissible if o(x) C B, if it is open and
bounded, and if 0B consists of finitely many, closed, rectifiable, pair-
wise distinct Jordan curves, and the (positive) orientation of OB is
determined by the orientation of each Jordan curve as follows: Go
through the curve counter clockwise in case that the neighboring points
of B are inside of the curve, otherwise go through the curve clock-
wise. The set of all locally holomorph functions f (with domain D(f))
is abbreviated by Hol(z). Addition and multiplication on Hol(z) is
defined as regular addition and multiplication of two functions such
that D(f +9) = D(fg) = D(f) N D(g). For f € Hol(z) we define
A)radA, where B is admissible such that o(z) C B C

— om faB
B c D(f).

REMARK 4.31. The above definition of f(z) does not depend on a
particular choice of B.

THEOREM 4.32. The map f — f(x) defined as above has the following
properties:

(a) (af)(z) = af(z);
(f +9)(=) = f(z) + g(z);

(b)

(c) ( 9)(x) = ( )9(x);

(d) if f(A) = A", then f(z) = z™, where n € Ny;

(e) if f(A) 75 or all X € o(z), then f(z) has an inverse f(z)~' =

(1/f)(z).
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THEOREM 4.33 (Spectral Mapping Theorem). For f € Hol(z) we have
o(f(z)) = f(o(z)).

THEOREM 4.34. If f € Hol(z), g € Hol(f(z)), then h € Hol(x), where
h is defined by h(\) = g(f(A\)). Moreover, we have h(x) = g(f(z)).

DEFINITION 4.35. The spectral abscissa of an element x is defined by
7(z) = max{ReX: ) € o(zx)}.

THEOREM 4.36. Let A be a unital Banach algebra over C. The spec-
tral abscissa of x € A is given by 7(x) = lim, h‘”;%”

4.4. The Spectrum of a Linear Operator

THEOREM 4.37. (a) If X is a Banach space and A € B(X), then
o(A*) = o(A).
(b) If H is a Hilbert space and A € B(H), then o(A*) = o(A)*,
where E* ={Z: z € E} for E C C.

DEFINITION 4.38. Let X be a Banach space over C. Suppose A €
B(X).
(a) The point spectrum of A is defined by 0,(A) = {A € C: Ker(A—
A) # {0}}.
(b) The approzimate point spectrum of A is defined by o,,(A4) = {) €
C: Haplnen C X with ||z,|] = 1¥n € N and lim, o ||(4A —
A)zn|| = 0}.

THEOREM 4.39. If A € B(X) and A € C, then the following state-
ments are equivalent:

(a) A& 0ogp(A);
(b) Ker(A — \) = {0} and Im(A — X) is closed;
(c) there exists ¢ > 0 such that ||(A — N)z|| > cl||z|| for all x.

REMARK 4.40. (a) 0,(A4) C 04(A).
(b) 0,(A) could be empty.

THEOREM 4.41. If A € B(X), then 0o(A) C g4p(A).

LEMMA 4.42. If A € By(X), A # 0, and Ker(A — X\) = {0}, then
Im(A — X) is closed.

LEMMA 4.43. If A € By(X), then o(A) \ {0} C 0,(A4) Ua,(A*).

LEMMA 4.44. If A € By(X) and A\, are distinct elements in 0,(A) for
all n € N, then lim,_,o A\, = 0.
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THEOREM 4.45 (F. Riesz). Let X be a Banach space with infinite di-

mension. If A € By(X), then one and only one of the following possi-
bilities occurs:

(a) o(A) ={0};

(b) o(A) = {0, \1,... A\, }, where, for each 1 < k < n, A\ # 0 is an
eigenvalue of A such that Ker(A — \y) is finite dimensional;

(c) o(A) = {0,A1, A, ...}, where, for each k € N, A\, # 0 is an
eigenvalue of A such that Ker(A — \y) is finite dimensional, and,
moreover, lim,,_,, A\, = 0.

4.5. Applications



CHAPTER 5

Methods of Optimization

5.1. Optimization of Functionals

5.2. Constrained Optimization
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