
Chapter 7

Stochastic Differential Equations

7.1 Some Equations and their Solutions

Definition 7.1. LetW be Brownian motion. A stochastic differential equation (SDE)
is an equation of the form

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t),

also written as
dX = µ(t,X)dt+ σ(t,X)dW,

where the drift µ and the diffusion σ are given. A process X is called a (strong)
solution of the SDE if

X(t) = X(0) +
∫ t

0
µ(u,X(u))du+

∫ t

0
σ(u,X(u))dW (u)

for all t ≥ 0, where both occurring integrals are assumed to exist.

Theorem 7.2. Let g be nonrandom. The solution of the problem

dX = g(t)XdW, X(0) = 1

is given by

X(t) = exp
{∫ t

0
g(s)dW (s)− 1

2

∫ t

0
g2(s)ds

}
.

Theorem 7.3. Let f and g be nonrandom. The solution of the problem

dX = f(t)Xdt+ g(t)XdW, X(0) = 1

is given by

X(t) = exp
{∫ t

0
g(s)dW (s) +

∫ t

0

(
f(s)− 1

2
g2(s)

)
ds
}
.

Theorem 7.4 (Stock Price). Let µ > 0 be the drift, σ > 0 the volatility. A model for
the relative change of price dS/S is

dS
S

= µdt+ σdW.
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Its solution is geometric Brownian motion

S(t) = S(0) exp
{
σW (t) +

(
µ− σ2

2

)
t

}
.

We also have

E(S(t)) = S(0)eµt and V(S(t)) = (S(0))2e2µt(eσ
2t − 1).

Example 7.5 (Generalized Geometric Brownian Motion). Let W be Brownian mo-
tion with associated filtration F and α, σ adapted to F. Another model for the relative
change of the stock price is

dS
S

= α(t)dt+ σ(t)dW.

Its solution is given by

S(t) = S(0) exp
{∫ t

0
σ(s)dW (s) +

∫ t

0

(
α(s)− 1

2
σ2(s)

)
ds
}
,

and this example includes all possible models of an asset price which is always posi-
tive, has no jumps, and is driven by a single Brownian motion.

7.2 Interest Rate Models

Theorem 7.6 (Itô Integral of Deterministic Integrand). Let W be Brownian motion,
g : R→ R be nonrandom, and

I(t) =

∫ t

0
g(s)dW (s).

Then

I(t) ∼ N
(

0,
∫ t

0
g2(s)ds

)
.

Example 7.7 (Langevin Equation). Let α, σ > 0 and consider the Langevin equation

dX(t) = −αX(t)dt+ σdW (t).

Its solution is called an Ornstein–Uhlenbeck process and is given by

X(t) = e−αtX(0) + σ

∫ t

0
e−α(t−u)dW (u)

and satisfies

X(t) ∼ N
(
e−αtX(0),

σ2(1− e−2αt)

2α

)
,
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in particular

E(X(t))→ 0 and V(X(t))→ σ2

2α
as t→∞.

Example 7.8 (Vasicek Interest Rate Model). Let α, β, σ > 0. A model for the interest
rate process R is

dR = (α− βR)dt+ σdW.

Its solution is

R(t) = e−βtR(0) +
α

β
(1− e−βt) + σe−βt

∫ t

0
eβτdW (τ)

and it satisfies

R(t) ∼ N
(
e−βtR(0) +

α(1− e−βt)
β

,
σ2(1− e−2βt)

2β

)
.

Example 7.9 (Cox–Ingersoll–Ross Interest Rate Model). Let α, β, σ > 0. A model
for the interest rate process R is

dR = (α− βR)dt+ σ
√
RdW.

We have

E(R(t)) = e−βtR(0) +
α(1− e−βt)

β

and

V(R(t)) =
σ2

β
R(0)(e−βt − e−2βt) +

ασ2

2β2 (1− e
−βt)2.

7.3 Black–Scholes–Merton Equation

Example 7.10 (Black–Scholes–Merton Equation). The price of a European call op-
tion c(t, x) at time t when the stock price is x satisfies the problem

ct + rxcx +
1
2
σ2x2cxx = rc with c(T, x) = (x−K)+,

where r is the risk-free interest rate, σ is the volatility, T is the expiration time of the
call, and K is the strike price.

Theorem 7.11. Define

c(t, x) = xN(d+(T − t, x))−Ke−r(T−t)N(d−(T − t, x)),
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where

d±(τ, x) =
ln
(
x
K

)
+
(
r ± σ2

2

)
τ

σ
√
τ

.

We have

d+(τ, x)− d−(τ, x) = σ
√
τ ; (a)

N ′(x) =
1√
2π
e−

x2
2 ; (b)

xN ′(d+(τ, x))−Ke−rτN ′(d−(τ, x)) = 0; (c)

∂d+(T − t, x)
∂t

=
∂d−(T − t, x)

∂t
− σ

2
√
T − t

; (d)

∂c(t, x)

∂t
= −rKe−r(T−t)N(d−(T − t, x))−

σx

2
√
T − t

N ′(d+(T − t, x)); (e)

∂d+(τ, x)

∂x
=
∂d−(τ, x)

∂x
=

1
σx
√
τ

; (f)

∂c(t, x)

∂x
= N(d+(T − t, x)); (g)

∂2c(t, x)

∂x2 =
1

σx
√
T − t

N ′(d+(T − t, x)); (h)

∂c(t, x)

∂t
+ rx

∂c(t, x)

∂x
+
σ2x2

2
∂2c(t, x)

∂x2 = rc(t, x); (i)

lim
t→T−

c(t, x) = (x−K)+. (j)

Theorem 7.12. The price of a European call at time zero with expiration time T and
strike price K is given by

S(0)N(d+(T, S(0)))−Ke−rTN(d−(T, S(0))).
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7.4 The Greeks

Definition 7.13. The Greeks of a European call are defined as follows:

∆ =
∂c(t, x)

∂x
(the Delta);

Θ =
∂c(t, x)

∂t
(the Theta);

Γ =
∂2c(t, x)

∂x2 (the Gamma);

V =
∂c(t, x)

∂σ
(the Vega);

ρ =
∂c(t, x)

∂r
(the Rho).

Theorem 7.14. The Greeks for a European call are given by

∆ = N(d+(T − t, x)),

Θ = −rKe−r(T−t)N(d−(T − t, x))−
σx

2
√

2π(T − t)
e−

(d+(T−t,x))2
2 ,

Γ =
1

σx
√

2π(T − t)
e−

(d+(T−t,x))2
2 ,

V = x

√
T − t

2π
e−

(d+(T−t,x))2
2 ,

ρ = K(T − t)e−r(T−t)N(d−(T − t, x)).


