Chapter 7

Stochastic Differential Equations

7.1 Some Equations and their Solutions

Definition 7.1. Let W be Brownian motion. A stochastic differential equation (SDE) is an equation of the form

$$
\mathrm{d} X(t)=\mu(t, X(t)) \mathrm{d} t+\sigma(t, X(t)) \mathrm{d} W(t)
$$

also written as

$$
\mathrm{d} X=\mu(t, X) \mathrm{d} t+\sigma(t, X) \mathrm{d} W
$$

where the drift μ and the diffusion σ are given. A process X is called a (strong) solution of the SDE if

$$
X(t)=X(0)+\int_{0}^{t} \mu(u, X(u)) \mathrm{d} u+\int_{0}^{t} \sigma(u, X(u)) \mathrm{d} W(u)
$$

for all $t \geq 0$, where both occurring integrals are assumed to exist.
Theorem 7.2. Let g be nonrandom. The solution of the problem

$$
\mathrm{d} X=g(t) X \mathrm{~d} W, \quad X(0)=1
$$

is given by

$$
X(t)=\exp \left\{\int_{0}^{t} g(s) \mathrm{d} W(s)-\frac{1}{2} \int_{0}^{t} g^{2}(s) \mathrm{d} s\right\}
$$

Theorem 7.3. Let f and g be nonrandom. The solution of the problem

$$
\mathrm{d} X=f(t) X \mathrm{~d} t+g(t) X \mathrm{~d} W, \quad X(0)=1
$$

is given by

$$
X(t)=\exp \left\{\int_{0}^{t} g(s) \mathrm{d} W(s)+\int_{0}^{t}\left(f(s)-\frac{1}{2} g^{2}(s)\right) \mathrm{d} s\right\}
$$

Theorem 7.4 (Stock Price). Let $\mu>0$ be the drift, $\sigma>0$ the volatility. A model for the relative change of price $\mathrm{d} S / S$ is

$$
\frac{\mathrm{d} S}{S}=\mu \mathrm{d} t+\sigma \mathrm{d} W
$$

Its solution is geometric Brownian motion

$$
S(t)=S(0) \exp \left\{\sigma W(t)+\left(\mu-\frac{\sigma^{2}}{2}\right) t\right\}
$$

We also have

$$
\mathbb{E}(S(t))=S(0) e^{\mu t} \quad \text { and } \quad \mathbb{V}(S(t))=(S(0))^{2} e^{2 \mu t}\left(e^{\sigma^{2} t}-1\right)
$$

Example 7.5 (Generalized Geometric Brownian Motion). Let W be Brownian motion with associated filtration \mathbb{F} and α, σ adapted to \mathbb{F}. Another model for the relative change of the stock price is

$$
\frac{\mathrm{d} S}{S}=\alpha(t) \mathrm{d} t+\sigma(t) \mathrm{d} W
$$

Its solution is given by

$$
S(t)=S(0) \exp \left\{\int_{0}^{t} \sigma(s) \mathrm{d} W(s)+\int_{0}^{t}\left(\alpha(s)-\frac{1}{2} \sigma^{2}(s)\right) \mathrm{d} s\right\}
$$

and this example includes all possible models of an asset price which is always positive, has no jumps, and is driven by a single Brownian motion.

7.2 Interest Rate Models

Theorem 7.6 (Itô Integral of Deterministic Integrand). Let W be Brownian motion, $g: \mathbb{R} \rightarrow \mathbb{R}$ be nonrandom, and

$$
I(t)=\int_{0}^{t} g(s) \mathrm{d} W(s)
$$

Then

$$
I(t) \sim N\left(0, \int_{0}^{t} g^{2}(s) \mathrm{d} s\right)
$$

Example 7.7 (Langevin Equation). Let $\alpha, \sigma>0$ and consider the Langevin equation

$$
\mathrm{d} X(t)=-\alpha X(t) \mathrm{d} t+\sigma \mathrm{d} W(t)
$$

Its solution is called an Ornstein-Uhlenbeck process and is given by

$$
X(t)=e^{-\alpha t} X(0)+\sigma \int_{0}^{t} e^{-\alpha(t-u)} \mathrm{d} W(u)
$$

and satisfies

$$
X(t) \sim N\left(e^{-\alpha t} X(0), \frac{\sigma^{2}\left(1-e^{-2 \alpha t}\right)}{2 \alpha}\right)
$$

in particular

$$
\mathbb{E}(X(t)) \rightarrow 0 \quad \text { and } \quad \mathbb{V}(X(t)) \rightarrow \frac{\sigma^{2}}{2 \alpha} \quad \text { as } \quad t \rightarrow \infty
$$

Example 7.8 (Vasicek Interest Rate Model). Let $\alpha, \beta, \sigma>0$. A model for the interest rate process R is

$$
\mathrm{d} R=(\alpha-\beta R) \mathrm{d} t+\sigma \mathrm{d} W
$$

Its solution is

$$
R(t)=e^{-\beta t} R(0)+\frac{\alpha}{\beta}\left(1-e^{-\beta t}\right)+\sigma e^{-\beta t} \int_{0}^{t} e^{\beta \tau} \mathrm{d} W(\tau)
$$

and it satisfies

$$
R(t) \sim N\left(e^{-\beta t} R(0)+\frac{\alpha\left(1-e^{-\beta t}\right)}{\beta}, \frac{\sigma^{2}\left(1-e^{-2 \beta t}\right)}{2 \beta}\right)
$$

Example 7.9 (Cox-Ingersoll-Ross Interest Rate Model). Let $\alpha, \beta, \sigma>0$. A model for the interest rate process R is

$$
\mathrm{d} R=(\alpha-\beta R) \mathrm{d} t+\sigma \sqrt{R} \mathrm{~d} W
$$

We have

$$
\mathbb{E}(R(t))=e^{-\beta t} R(0)+\frac{\alpha\left(1-e^{-\beta t}\right)}{\beta}
$$

and

$$
\mathbb{V}(R(t))=\frac{\sigma^{2}}{\beta} R(0)\left(e^{-\beta t}-e^{-2 \beta t}\right)+\frac{\alpha \sigma^{2}}{2 \beta^{2}}\left(1-e^{-\beta t}\right)^{2}
$$

7.3 Black-Scholes-Merton Equation

Example 7.10 (Black-Scholes-Merton Equation). The price of a European call option $c(t, x)$ at time t when the stock price is x satisfies the problem

$$
c_{t}+r x c_{x}+\frac{1}{2} \sigma^{2} x^{2} c_{x x}=r c \quad \text { with } \quad c(T, x)=(x-K)^{+}
$$

where r is the risk-free interest rate, σ is the volatility, T is the expiration time of the call, and K is the strike price.

Theorem 7.11. Define

$$
c(t, x)=x N\left(d_{+}(T-t, x)\right)-K e^{-r(T-t)} N\left(d_{-}(T-t, x)\right)
$$

where

$$
d_{ \pm}(\tau, x)=\frac{\ln \left(\frac{x}{K}\right)+\left(r \pm \frac{\sigma^{2}}{2}\right) \tau}{\sigma \sqrt{\tau}}
$$

We have

$$
\begin{gather*}
d_{+}(\tau, x)-d_{-}(\tau, x)=\sigma \sqrt{\tau} ; \tag{a}\\
N^{\prime}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} ; \tag{b}\\
x N^{\prime}\left(d_{+}(\tau, x)\right)-K e^{-r \tau} N^{\prime}\left(d_{-}(\tau, x)\right)=0 ; \tag{c}\\
\frac{\partial d_{+}(T-t, x)}{\partial t}=\frac{\partial d_{-}(T-t, x)}{\partial t}-\frac{\sigma}{2 \sqrt{T-t}} ; \tag{d}\\
\frac{\partial c(t, x)}{\partial t}=-r K e^{-r(T-t)} N\left(d_{-}(T-t, x)\right)-\frac{\sigma x}{2 \sqrt{T-t}} N^{\prime}\left(d_{+}(T-t, x)\right) ; \tag{e}\\
\frac{\partial d_{+}(\tau, x)}{\partial x}=\frac{\partial d_{-}(\tau, x)}{\partial x}=\frac{1}{\sigma x \sqrt{\tau}} ; \tag{f}\\
\frac{\partial c(t, x)}{\partial x}=N\left(d_{+}(T-t, x)\right) ; \tag{g}\\
\frac{\partial^{2} c(t, x)}{\partial x^{2}}=\frac{1}{\sigma x \sqrt{T-t} N^{\prime}\left(d_{+}(T-t, x)\right) ;} \tag{h}\\
\frac{\partial c(t, x)}{\partial t}+r x \frac{\partial c(t, x)}{\partial x}+\frac{\sigma^{2} x^{2}}{2} \frac{\partial^{2} c(t, x)}{\partial x^{2}}=r c(t, x) ; \tag{i}\\
\lim _{t \rightarrow T^{-}} c(t, x)=(x-K)^{+} \tag{j}
\end{gather*}
$$

Theorem 7.12. The price of a European call at time zero with expiration time T and strike price K is given by

$$
S(0) N\left(d_{+}(T, S(0))\right)-K e^{-r T} N\left(d_{-}(T, S(0))\right)
$$

7.4 The Greeks

Definition 7.13. The Greeks of a European call are defined as follows:

$$
\begin{gathered}
\Delta=\frac{\partial c(t, x)}{\partial x} \quad \text { (the Delta); } \\
\Theta=\frac{\partial c(t, x)}{\partial t} \quad \text { (the Theta); } \\
\Gamma=\frac{\partial^{2} c(t, x)}{\partial x^{2}} \quad \text { (the Gamma); } \\
\mathcal{V}=\frac{\partial c(t, x)}{\partial \sigma} \quad \text { (the Vega); } \\
\rho=\frac{\partial c(t, x)}{\partial r} \quad \text { (the Rho). }
\end{gathered}
$$

Theorem 7.14. The Greeks for a European call are given by

$$
\begin{gathered}
\Delta=N\left(d_{+}(T-t, x)\right) \\
\Theta=-r K e^{-r(T-t)} N\left(d_{-}(T-t, x)\right)-\frac{\sigma x}{2 \sqrt{2 \pi(T-t)}} e^{-\frac{\left(d_{+}(T-t, x)\right)^{2}}{2}}, \\
\Gamma=\frac{1}{\sigma x \sqrt{2 \pi(T-t)}} e^{-\frac{\left(d_{+}(T-t, x)\right)^{2}}{2}}, \\
\mathcal{V}=x \sqrt{\frac{T-t}{2 \pi}} e^{-\frac{\left(d_{+}(T-t, x)\right)^{2}}{2}}, \\
\rho=K(T-t) e^{-r(T-t)} N\left(d_{-}(T-t, x)\right) .
\end{gathered}
$$

