Chapter 9

Exotic Options

9.1 Maximum of Brownian Motion

Definition 9.1. The maximum to date for a Brownian motion W is defined by

$$
M(t)=\max _{0 \leq s \leq t} W(s)
$$

Lemma 9.2 (Reflection Equality). If W is Brownian motion and M is its maximum to date, then

$$
\mathbb{P}(M(t) \geq m, W(t) \leq w)=\mathbb{P}(W(t) \geq 2 m-w) \quad \text { for } \quad w \leq m, \quad m>0 .
$$

Theorem 9.3. For $t>0$, the joint density of $(M(t), W(t))$ is

$$
f_{M(t), W(t)}(m, w)=\frac{2(2 m-w)}{t \sqrt{2 \pi t}} e^{-\frac{(2 m-w)^{2}}{2 t}} \quad \text { for } \quad w \leq m, \quad m>0
$$

Definition 9.4. Let \tilde{W} be a Brownian motion on a probability space $(\Omega, \mathcal{F}, \tilde{\mathbb{P}})$. We define the Brownian motion with a drift α under $\tilde{\mathbb{P}}$ by

$$
\hat{W}(t)=\alpha t+\tilde{W}(t) \quad \text { for } \quad 0 \leq t \leq T
$$

Theorem 9.5. The joint density under $\tilde{\mathbb{P}}$ of $(\hat{M}(T), \hat{W}(T))$ is

$$
\tilde{f}_{\hat{M}(T), \hat{W}(T)}(m, w)=\frac{2(2 m-w)}{T \sqrt{2 \pi T}} e^{\alpha w-\frac{\alpha^{2} T}{2}-\frac{(2 m-w)^{2}}{2 T}} \quad \text { for } \quad w \leq m, \quad m>0 .
$$

Theorem 9.6. We have

$$
\tilde{\mathbb{P}}(\hat{M}(T) \leq m)=N\left(\frac{m-\alpha T}{\sqrt{T}}\right)-e^{2 \alpha m} N\left(\frac{-m-\alpha T}{\sqrt{T}}\right) \quad \text { for } \quad m \geq 0
$$

and the density of the random variable $\hat{M}(T)$ under $\tilde{\mathbb{P}}$ is

$$
\tilde{f}_{\hat{M}(T)}(m)=\sqrt{\frac{2}{\pi T}} e^{-\frac{(m-\alpha T)^{2}}{2 T}}-2 \alpha e^{2 \alpha m} N\left(\frac{-m-\alpha T}{\sqrt{T}}\right) \quad \text { for } \quad m \geq 0
$$

9.2 Knock-out Barrier Options

Definition 9.7. An up-and-out European call with strike price K and up-and-out barrier B pays off $(S(T)-K)^{+}$if $\max _{0 \leq t \leq T} S(t) \leq B$ and 0 otherwise.

Theorem 9.8. Assume r and σ are constant. The price of an up-and-out European call at time 0 is

$$
\begin{aligned}
V(0)= & S(0)\left\{N\left(\delta_{+}\left(T, \frac{S(0)}{K}\right)\right)-N\left(\delta_{+}\left(T, \frac{S(0)}{B}\right)\right)\right\} \\
& -K e^{-r T}\left\{N\left(\delta_{-}\left(T, \frac{S(0)}{K}\right)\right)-N\left(\delta_{-}\left(T, \frac{S(0)}{B}\right)\right)\right\} \\
& -B\left(\frac{S(0)}{B}\right)^{-\frac{2 r}{\sigma^{2}}}\left\{N\left(\delta_{+}\left(T, \frac{B^{2}}{S(0) K}\right)\right)-N\left(\delta_{+}\left(T, \frac{B}{S(0)}\right)\right)\right\} \\
& +K e^{-r T}\left(\frac{S(0)}{B}\right)^{1-\frac{2 r}{\sigma^{2}}}\left\{N\left(\delta_{-}\left(T, \frac{B^{2}}{S(0) K}\right)\right)-N\left(\delta_{-}\left(T, \frac{B}{S(0)}\right)\right)\right\}
\end{aligned}
$$

where

$$
\delta_{ \pm}(\tau, x)=\frac{\ln (x)+\left(r \pm \frac{\sigma^{2}}{2}\right) \tau}{\sigma \sqrt{\tau}}
$$

9.3 Lookback Options

Definition 9.9. A floating strike lookback option pays off $\max _{0 \leq t \leq T} S(t)-S(T)$.
Theorem 9.10. Assume r and σ are constant. The price of a floating strike lookback option at time t is

$$
\begin{aligned}
V(t)= & e^{-r \tau} Y(t) N\left(-\delta_{-}\left(\tau, \frac{S(t)}{Y(t)}\right)\right) \\
& -\frac{\sigma^{2}}{2 r}\left(\frac{Y(t)}{S(t)}\right)^{\frac{2 r}{\sigma^{2}}} S(t) e^{-r \tau} N\left(-\delta_{-}\left(\tau, \frac{Y(t)}{S(t)}\right)\right) \\
& +\left(1+\frac{\sigma^{2}}{2 r}\right) S(t) N\left(\delta_{+}\left(\tau, \frac{S(t)}{Y(t)}\right)\right)-S(t)
\end{aligned}
$$

where

$$
\tau=T-t \quad \text { and } \quad Y(t)=\max _{0 \leq u \leq t} S(u)
$$

In particular,
$V(0)=S(0)\left\{\left(1-\frac{\sigma^{2}}{2 r}\right) e^{-r T} N\left(\frac{\frac{\sigma^{2}}{2}-r}{\sigma} \sqrt{T}\right)+\left(1+\frac{\sigma^{2}}{2 r}\right) N\left(\frac{\frac{\sigma^{2}}{2}+r}{\sigma} \sqrt{T}\right)-1\right\}$.

