69. What is the price of a European call option on a non-dividend-paying stock when the stock price is $\$ 52$, the strike price is $\$ 50$, the risk-free interest rate is 12%, the volatility is 30%, and the time to maturity is 3 months?
70. What is the price of a European put option on a non-dividend-paying stock when the stock price is $\$ 69$, the strike price is $\$ 70$, the risk-free interest rate is 5%, the volatility is 35%, and the time to maturity is 6 months?
71. Calculate the price of a 3-month at-the-money European put option on a non-dividend-paying stock when the stock is at $\$ 50$, the risk-free interest rate is 10%, and the volatility is 30%.
72. Assume that a certain security pays off a dollar amount equal to $\ln (S(T))$ at time T, where $S(T)$ denotes the value of the stock price at time T.
(a) Use risk-neutral valuation to calculate the price of the security at time t in terms of the stock price S at time t.
(b) Confirm that your price satisfies the Black-Scholes-Merton differential equation.
73. Answer the previous question if $\ln (S(T))$ is replaced by $(S(T))^{2}$.
74. Consider a derivative that pays off $(S(T))^{n}$ at time T, where $S(T)$ is the stock price (following geometric Brownian motion) at that time. In view of the previous problem, we assume that the price of the derivative at time $t \leq T$ has the form $h(t, T) S^{n}$, where S is the stock price at time t and h is a function of t and T.
(a) By substituting into the Black-Scholes-Merton partial differential equation, derive an ordinary differential equation for h.
(b) What is the boundary condition for the differential equation for h ?
(c) Solve the problem for h and hence find the price of the derivative.
75. Use risk-neutral valuation to find the price at time $t \in[0, T]$ for a European
(a) cash-or-nothing call option that pays $C>0$ if the stock price at time T exceeds the level K (otherwise it pays zero);
(b) asset-or-nothing call option that pays $S(T)$ if the stock price $S(T)$ at time T exceeds the level K (otherwise it pays zero).
