56. Define the Hermite polynomials h_{n} by

$$
h_{n}(t, x)=\frac{(-t)^{n}}{n!} e^{x^{2} / 2 t} \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}}\left(e^{-x^{2} / 2 t}\right)
$$

(a) Find the first four Hermite polynomials.
(b) Show that for $n \in \mathbb{N}_{0}$, we have

$$
\int_{0}^{T} h_{n}(t, W(t)) \mathrm{d} W(t)=h_{n+1}(T, W(T))
$$

57. Show that $e^{i W(t)}=X_{1}(t)+i X_{2}(t)$ is a process on the unit circle satisfying

$$
\mathrm{d} X_{1}=-\frac{1}{2} X_{1} \mathrm{~d} t-X_{2} \mathrm{~d} W, \quad \mathrm{~d} X_{2}=-\frac{1}{2} X_{2} \mathrm{~d} t+X_{1} \mathrm{~d} W .
$$

58. Compute $\mathrm{d}(S(t))^{p}$ and $\mathbb{E}\left((S(t))^{p}\right)$, where S is geometric Brownian motion.
59. Write down the stochastic differential equation obtained via Itô's formula for the process $Y(t)=(W(t))^{4}$ and use it to calculate $\mathbb{E}\left((W(t))^{4}\right)$.
60. Write down the stochastic differential equation obtained via Itô's formula for the process $Y(t)=(W(t))^{6}$ and use it to calculate $\mathbb{E}\left((W(t))^{6}\right)$.
61. Let W be a Brownian motion and define $B(t)=\int_{0}^{t} \operatorname{sgn}(W(s)) \mathrm{d} W(s)$ with $\operatorname{sgn}(x)=1$ for $x \geq 0$ and $\operatorname{sgn}(x)=-1$ for $x<0$.
(a) Show that B is a Brownian motion.
(b) Use Itô's product rule to compute $\mathrm{d}(B(t) W(t))$.
(c) Show that B and W are uncorrelated.
(d) Use Itô's product rule to compute $\mathrm{d} W^{2}(t)$ and $\mathrm{d}\left(B(t) W^{2}(t)\right)$.
(e) Show that B and W are not independent.
