62. If S follows geometric Brownian motion, find the distribution of $\ln S$.
63. Solve $\mathrm{d} X=W \mathrm{~d} t+t \mathrm{~d} W, X(0)=0$.
64. Suppose $X(t)=t W(t)$ and let Y be the solution of

$$
\mathrm{d} Y=\frac{1}{2} Y \mathrm{~d} t+Y \mathrm{~d} W, \quad Y(0)=1
$$

Find $\mathrm{d}(X(t) Y(t))$.
65. Find a stochastic differential equation solved by the process $X(t)=\frac{W(t)}{1+t}$.
66. Solve $\mathrm{d} X(t)=(\alpha(t)+\beta(t) X(t)) \mathrm{d} t+\gamma(t) \mathrm{d} W(t)$, where α, β, γ are deterministic.
67. If R solves the CIR model, calculate the third moment of $R(t)$.
68. If R solves the Vasicek model, define the price of a zero-coupon bond with maturity T at time $t \in[0, T]$ by

$$
B(t)=a(t) e^{-R(t) b(t)}
$$

where

$$
b(t)=\frac{1-e^{-\beta(T-t)}}{\beta}
$$

and

$$
a(t)=\exp \left\{\left(\frac{\alpha}{\beta}-\frac{\sigma^{2}}{2 \beta^{2}}\right)(b(t)-T+t)-\frac{\sigma^{2}}{4 \beta} b^{2}(t)\right\} .
$$

Show

$$
\mathrm{d} B(t)=R(t) B(t) \mathrm{d} t-\sigma b(t) B(t) \mathrm{d} W(t)
$$

and

$$
\mathrm{d} \frac{1}{B(t)}=\frac{\sigma^{2} b^{2}(t)-R(t)}{B(t)} \mathrm{d} t+\frac{\sigma b(t)}{B(t)} \mathrm{d} W(t) .
$$

