- 28. Problems from the Textbook: 4, 5, 8, 10, 11, 14, 16, 22, 26, 34 (3.2); 2, 6, 8, 17, 21, 38, 43 (3.3); 2, 6, 8, 12, 16, 17, 19, 24, 27, 36 (3.4); 2,, 7, 8, 12, 14, 20, 23, 30, 34, 37, 40, 44, 48, 52, 55, 60 (3.5); 4, 6, 13, 17, 22, 24, 31, 32, 33, 38 (3.6); 4, 6, 7, 10, 15, 19 (3.7); 2, 7, 8, 9, 15, 19, 23, 26, 28, 31, 36, 37, 46, 51 (3.8).
- 29. Find the smallest and largest values of f on D:
 - (a) f(x) = |x 3|, D = [-4, 6];
 - (b) $f(x) = |x^3 x^2 x 1|, D = \mathbb{R};$
 - (c) $f(x) = \frac{9}{x} + x 3$, D = [1, 9];
 - (d) $f(x) = \frac{x^2 1}{x^2 + 1}$, D = [-1, 1];
 - (e) $f(x) = \sqrt{x} \sqrt[4]{1 x^2}$, D = [-1, 1];
 - (f) $f(x) = (x^2 4)^5(x + 1)^6$, $D = \mathbb{R}$;
 - (g) $f(x) = \begin{cases} |x-3|+2 & \text{for } x \le 4 \\ x^2 10x + 27 & \text{for } x > 4 \end{cases}$, $D = \begin{bmatrix} \frac{5}{2}, 6 \end{bmatrix}$.
- 30. For each of the functions $f(x) = x^3 3x 4$, $f(x) = 1 + 2x + \frac{18}{x}$, $f(x) = \frac{x^2}{x-3}$, $f(x) = (x^3 + 3x^2)^3$, $f(x) = x + \cos(2x)$, do the following:
 - (a) Find f' and f'' as well as their zeros.
 - (b) Give all intervals where f is increasing and decreasing, resp., and determine all local extrema.
 - (c) Give all intervals where f is concave upwards and downwards, resp., and determine all inflection points.
 - (d) Find the y- and x-intercepts of f and sketch the graph of f (for the last one between 0 and π , for all others between -4 and 4).
- 31. For $f(x) = x^2 4ax + 3a^2$ (with a > 0) and $f(x) = \frac{x^2 1}{x^2 a^2}$ (with a > 1), do the following:
 - (a) Find f'(x) and its zeros and sketch the graph of f'.
 - (b) Find f''(x) and its zeros and sketch the graph of f''.
 - (c) Determine the zeros of f and sketch the graph of f.
- 32. Find a cubic polynomial with a local maximum at $(-1, \frac{4}{3})$ and a local minimum at (1, 0).
- 33. Suppose the stripe between y = 0 and y = 1 is a river and a person P is at the point (0, 1) trying to go to (1, 0). P first rows by a boat (with 6 units an hour) to the point (p, 0) and then runs (with 10 units an hour) to (1, 0).
 - (a) Draw a picture of the scene.
 - (b) Describe the travel time as a function of p.
 - (c) Where should p be so the travel time is minimal?
 - (d) What is the minimal travel time in minutes?
 - (e) What is the longest possible travel time in minutes, provided P doesn't leave the unit square?