- 7. For the following systems of equations, rewrite the systems as an equation Ax = b, do Gaussian Elimination and find the solution:
 - (a) 2u + 4v = 3, 3u + 7v = 2;
 - (b) 3u + 5v + 3w = 25, 7u + 9v + 19w = 65, -4u + 5v + 11w = 5;
 - (c) u + 2v + 3w = 39, u + 3v + 2w = 34, 3u + 2v + w = 26;
 - (d) u + 3v + 5w = 1, 3u + 12v + 18w = 1, 5u + 18v + 30w = 1.
- 8. Work on problems 1–4 (graph the feasible regions), 8, and 9 of Section 3.3 of the textbook.
- 9. Manhattan Beach Brewing Co. is brewing a bock beer and an export beer. The bock beer sells for \$5 per case and the export beer for \$2 per case. To produce a case of bock beer, 2 pounds of hops and 5 pounds of barley are needed, for export beer 1 pound hops and 2 pounds barley are needed (per case). Currently, 60 pounds barley and 25 pounds hops are available.
 - (a) Rewrite the problem as an LP.
 - (b) Solve the LP graphically.
- 10. Given are the following data:

Ingredients (g/500ml)	Lager	Pilsener	Export	Bock
carbohydrates	20	17	20	30
${\bf proteine}$	1.5	1.5	1.55	1.6
calories	185	190	250	310
alcohol	18	20	21.5	24.5
minerals	1.25	1.25	1.5	1.75
costs (\$/500ml)	1.10	1.30	1.20	1.50

Write an LP that calculates the cheapest daily menu that contains at least 250g carbohydrates, 30g proteine, 1000 calories, 150g alcohol, and 25g minerals.

- 11. Prove that if x and y are optimal solutions of an LP, then every point on the line segment \overline{xy} is also an optimal solution of that LP.
- 12. Work through Section 3.7 and solve the exercises there.