FIRST AND SECOND ORDER LINEAR DYNAMIC
EQUATIONS ON TIME SCALES

MARTIN BOHNER AND ALLAN PETERSON!

ABSTRACT. We consider first and second order linear dynamic equa-
tions on a time scale. Such equations contain as special cases differen-
tial equations, difference equations, g-difference equations, and others.
Important properties of the exponential function for a time scale are
presented, and we use them to derive solutions of first and second order
linear dyamic equations with constant coefficients. Wronskians are used
to study equations with non-constant coefficients. We consider the re-
duction of order method as well as the method of variation of constants
for the nonhomogeneous case. Finally, we use the exponential function
to present solutions of the Euler-Cauchy dynamic equation on a time

scale.

1. INTRODUCTION

The theory of measure chains, which has recently received a lot of at-
tention, was introduced by Stefan Hilger in his PhD thesis [14] in 1988
(supervised by Bernd Aulbach) in order to unify continuous and discrete
analysis. Hilger [15] has defined an exponential function, trigonometric
functions, and hyperbolic functions and developed some theory for linear
dynamic equations with constant coefficients for time scales T (i.e., closed

subsets of the reals) with constant graininess. The only time scales that
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have constant graininess are closed real intervals or sets which have con-
stant step size h > 0. In this paper we are concerned with the general case
when the time scale need not have constant graininess. The trigonometric
and hyperbolic functions that we define are different from the ones defined
by Hilger. Because of all the useful properties that we develop in this pa-
per, we believe that this is the way these functions should be defined for
the general setting.

Let us briefly summarize the set up of this paper. In the next Section 2
we give a short introduction to the time scales calculus, while the following
Section 3 is devoted to the exponential function as introduced by Stefan
Hilger in [16]. We also develop several important properties of the expo-
nential function, which are needed in the remaining parts of this paper.
Section 4 deals with first order linear dynamic equations on time scales.
We present the solution of an initial value problem involving such (pos-
sibly nonhomogeneous) dynamic equations. Associated with a first order
equation is a so-called adjoint equation, which is also of first order, and a
study of this equation is contained in Section 4 as well. In Section 5 we
discuss second order linear dynamic equations. We introduce Wronskians
and derive Abel’s formula. Next, we completely discuss the case of con-
stant coefficients, and to do so, we introduce hyperbolic and trigonometric
functions on time scales and derive some of their properties. Solutions of
initial value problems involving an equation with constant coefficients are
presented. Other special cases of second order equations (with not necessar-
ily constant coefficients) are covered in Section 5 also, as well as a variation
of constants result for the nonhomogeneous case. Finally, in Section 7, we
discuss Euler-Cauchy equations on time scales, and present its solutions in

terms of the exponential function.
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2. THE TIME ScALES CALCULUS

In this section we briefly introduce the time scales calculus. For proofs and
further explanations and results we refer to the papers by Hilger [3, 15, 16],
to the book by Kaymakgalan, Lakshmikantham, and Sivasundaram [17],
and to the more recent papers [1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13]. A time
scale T is a closed subset of R, and the (forward) jump operator o : T — T
is defined by

o(t):=inf{s € T: s >t}

(supplemented by inf ) = sup T), while the graininess p: T — R, is

A point ¢ is called right-scattered if o(¢) > ¢ and right-dense if o(t) = ¢.
The notions of left-scattered and left-dense are defined similarly using the
backward jump operator. We write T* for T minus a possible left-scattered
maximum. A function f: T — R is called rd-continuous if it is continuous
at right-dense points and if the left-hand sided limit exists at left-dense
points. For a function f : T — R we define the derivative f2 as follows:
Let ¢t € T. If there exists a number o € R such that for all € > 0 there

exists a neighborhood U of ¢t with
|f(o(t)) — f(s) —afo(t) —s)| <elo(t) —s| forall seU,

then f is said to be (delta) differentiable at ¢, and we call « the derivative
of f at t and denote it by f2(t). Moreover, we denote f° = f oo. The
following formulas are useful:

o f7=f+pf

o (fg)® = f2g+ f7¢* (“Product Rule”);

o (f/9)% = (f%g— fg*)/(99°) (“Quotient Rule”).
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A function F with F2 = f is called an antiderivative of f, and then we

define
/ f(H)AL = F(b) - F(a),

where a,b € T. It is well-known [15] that rd-continuous functions possess

antiderivatives. A simple consequence of the first formula above is

o [79 F()AT = u(t)F ().

3. THE EXPONENTIAL FUNCTION

A function p : T — R is called regressive if
L+ p(t)p(t) #0 forall t¢teT.

Hilger [16] showed that for ¢y € T and rd-continuous and regressive p, the

solution of the initial value problem

(3.1) y* =p(t)y, ylto) =1
is given by e,(-,tp), where

t Lostha) if b £ 0
) =exp { [ Gunprary vt 6(e) -
s z it h=0.
Clearly, e,(t,s) never vanishes, and hence we can consider the quotient
f/ep(-,t0) if f is another solution of (3.1). But then
( f )A _ [Pelto) — fep' (5 to)
ep('at()) ep('atO)eg('atO)
pfep('; tO) - fpep('a tO)
el)(" to)eg(" tO)

so f/ey(-,t0) = f(to)/ep(to, to) =1 and hence e,(-, o) is the only solution of
(3.1).



FIRST AND SECOND ORDER, LINEAR DYNAMIC EQUATIONS 5

We now proceed to give some fundamental properties of the exponenetial

function. To do so it is necessary to introduce the following notation: For
regressive p,q : T — R we define

p

p®q:=p+q+upg, ©p:=-—
L+ pp

, POq:=p®(Sp).

Theorem 3.1. Assumep,q: T — R are regressive and rd-continuous, then

the following hold:
t,s) =1 and ey(t,t) = 1;

o(t),s) = (1 + p(t)p(t))ey(t; s);

(1 €9
(ii) e,

[ e o

(iii

)
)
)
(iv) ep(t,s
(v)
)
)

(Vi) ep(t, s)eq(t, s) = epmq(t, s),
(vii Zzgzg = epoq(t, 5)

Proof. Part (i). The function y(¢) = 1 is obviously a solution of the initial
value problem y® = 0y, y(s) = 1, and since this problem has only one
solution, namely eq(¢, s), we have that eq(t,s) = y(t) = 1.
Part (ii). By a formula from Section 2 we have
eo(t). ) = €(t.s)
= olt.) + u(t)ep 1, 9)

= (L+p@®)p(t))ep(t; s)-

Part (iii). Consider the initial value problem
(3:2) y® = (ep)(t)y, y(s)=1.

It is easy to see that the dynamic equation in (3.2) is regressive. We show

that for each fixed s, y(t) = 1/ey(t, s) satisfies (3.2). Indeed, y(s) =1 is
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obvious. We use the quotient rule to obtain

0 = ( (1,5))A<t)

where we have also used part (ii) in the second to the last step.

Part (iv). By the definition of the exponential function, it follows that

and this is equal to eg,(s,t) according to part (iii).

Part (v). Consider the initial value problem

(3.3) y® =p(t)y, y(r)=1.
We show that y(t) = e,(t, s)e,(s, ) satisfies (3.3): It is obvious that y*(t) =

p(t)y(t), and y(r) = ep(r, s)ey(s,7) = 1 follows from part (iv).

Part (vi). Consider the initial value problem

(3-4) v =me9®)y, y(s)=1.

It is easy to see that the dynamic equation in (3.4) is regressive. We show

that y(t) = e,(t, s)eq(t, s) satisfies (3.4): We have y(s) = e, (s, s)eq(s, s) =1,
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and we use the product rule to calculate

y2 (1) = (en(5)eq(,5))2(1)
= p(t)ep(t; s)eqg(a(t), s) + ep(t; 5)q(t)eq(t, )
= p(t)ep(t, ) (1 + p(t)q(t))eq(t; s) + ep(t; s)q(t)eq(t s)

= (p®q)()y(?),

where we have also used part (ii) of this theorem.

Part (vii). This follows easily using parts (iii) and (vi) of this theorem. O

Theorem 3.2. Assume that p : T — R is regressive and rd-continuous.

Let ty € T.

(i) If 1+ pp >0 on T, then ey(t, to) > 0 for allt € T;
ii) If 14+ pup < 0 on T%, then ey(t,tg) = alt,tg)(—1)™ for allt € T, where
(ii) 1% D

a(t, t) = exp (/tt log |1 JLE‘T()T)W)'AT) >0

and ny is one plus the (finite) number of elements of T strictly between

to and t.

Proof. Part (i): Since 1+ pu(t)p(t) > 0, we have Log[1 + p(t)p(t)] € R for
all ¢ € T and therefore

Ean(p(t)) €R forall teT.

Hence e, (t,ty) > 0 forallt € T, by the definition of the exponential function.

Part (ii) follows similarly as above: Since u(t) # 0 for all ¢ € T, we have

Log[l + u(t)p(t)] = log |1 + p(t)p(t)| +ir for all ¢t e T*
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and therefore

e)(tt)) = exp / n )

- e ([0 CHLZIEN

= aft,to) exp (” /t: %)

= aft,to) exp (imny)

= at,to)(=1)",

where we used a formula from Section 2 to evaluate the last integral. [

Ezample 3.1. (i) If T = R, then e,(t,s) = exp {f:p(T)AT} for continu-
ous p, hence e4(t,s) = e*(*=%) for constant «, and e, (¢,0) = €.

(ii) If T = Z, then e,(t,s) = [['Z, (1 +p(r)) if p is never —1 (and for
s < t), hence e,(t,s) = (1 4+ a)"™* for a # —1, and e, (¢,0) = 2.

(iii) If T = hZ = {hk| k € Z} for h > 0, then e;(¢,0) = (1 + h)¥/" in
particular if h = % for n € N, then e;(¢,0) = [(1 + %)n]t

(iv) I T = ¢ = {¢*| k € Ny} where ¢ > 1 (this case corresponds to
so-called g-difference equations, see e.g., [4, 18, 19]), then it is easy
to verify that y(t) = vtexp(—1In®(t)/(21n(q))) is equal to e,(t, 1), if
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p(t) .= (1 —t)/((qg — 1)t?). To see this note that y(1) = 1 and

v = U
ey (~SGRO)  Vie (-4nd)
(g—1)t
[ (-5 ) 1] v (5
(g— 1)t
= ﬁy(t)
= p(t)y(t).

(v) T =N = {k?| k € Ny}, then y(t) = 2V¥(v/)! is equal to e (t,0). To
see this note that y(0) =1 and
y(o(t) —y(t)
u(t)
VLV 4 1)! = 2VH(/2)!
2Vt +1

y2 () =

= y(b).

(vi) IFT = {>"7_, +| k € N}, then e,(t,s) = ("-°7*), where t =Y, _, +.

n—s
4. FIRST ORDER LINEAR DYNAMIC EQUATIONS

In this section we present solutions to initial value problems involving
first order linear nonhomogeneous dynamic equations with rd-continuous

coefficients.

Theorem 4.1. Let p : T — R be rd-continuous and regressive. Suppose
f: T — R is rd-continuous, to € T, and xog € R. Then the unique solution

of the initial value problem

(4.1) % = —p(t)z® + f(t), x(ty) =z
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18 given by

() = ceplts o) + | cenlt,7) (DA

to
Proof. Using the properties of the exponential function given in Theorem
3.1 it is easy to verify that x given above indeed solves (4.1). Conversely,
let us assume that x is a solution of (4.1). We multiply both sides of the
dynamic equation in (4.1) by the integrating factor e, (¢, %) and obtain

lep(-1t0)2]® = ep(-,t0)a™ + pey (-, to)a”
= ¢, to) [2° + p2°]
= ep('atO)f;

and now we integrate both sides from ¢y to ¢ to conclude

(4.2) ep(t, to)x(t) — ep(to, to)z(to) = /t ep(T,t0) f(T)AT.

to

This integration is possible according to Section 2 since f is rd-continuous.

Solving equation (4.2) for x(¢) leads to the desired result. O

Theorem 4.2. Let p : T — R be rd-continuous and regressive. Suppose
f: T — R s rd-continuous, tg € T, and yg € R. Then the unique solution

of the wnitial value problem

(4.3) y® =pt)y + f(t), y(to) =10

s given by

y(t) = ep(t, to)yo + /t ep(t, o(T)) f(T)AT.

to

Proof. We equivalently rewrite y® = py + f as y® = p(y° — uy®) + f, i.e.,

(14 up)y™ =py° + f,

. A P o f .
l.e.,, Yy = my + m, 1.e.,

f
1+ pp

y* = —(ep)y’ +
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By Theorem 4.1, the unique solution of (4.3) is hence given by (note that
S(op) =p)

€p(t, to)yo -+ /t ep(t, T) f(T) AT.

to 1+ p(r)p(7)

Using (ii) from Theorem 3.1, we obtain the desired result. O

5. SECOND ORDER LINEAR DYNAMIC EQUATIONS

The Wronskian of two differentiable functions z; and x5 is defined by

T oz
W(.Tl, .TQ) = det, ! 2
of 3
We first consider the equation
(5.1) 2% 4+ p(t) 2" + q(t)z° = 0.

Theorem 5.1 (Abel’s Formula). Let p,q : T — R and ty € T. Suppose

that p is regressive. If 1 and x4 solve (5.1), then
W (@1, x2)(t) = W(z1,22)(to)eep(t, to) forall teT.

Proof. A simple calculation shows that

A ] x5 -
W= (21, 2) = det GAA AN = —pW? (21, 22),
1 2
and hence our claim follows from Theorem 4.2. O

Corollary 5.1. Ifg: T — R, the Wronskian of any two solutions of
2% +q(t)z° =0

18 constant.
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Now we will find the solutions of the second order linear dynamic equation

with constant coeflicients
(5.2) Yy +ay® + Py =0
(where « and /3 are constant).

Theorem 5.2. Suppose a? — 483 # 0. If ufS — « is regressive, then a fun-
damental system of (5.2) is given by

e)\l('atO) and e)\z('atO)a

where to € T and

o — 2 _4 _ 2 _ 4
WP VAl R W e 28
2 2
The solution of the initial value problem
(5.3) (5:2), y(to) =0, y>(to) =5

s given by

ex (s to) + exy (- to)  ayo + 25  ex, (-, to) — ex, (-, to)
Yo B o — 45 5 .

Proof. Since \; and A5 given above solve of the characteristic equation
(5.4) N 4+al+B=0,

we find that both ey, (-, %) and ey, (-, %) solve the dynamic equation (5.2).

Moreover, the Wronskian of these two solutions is found to be

ex(t,1 ex, (t,1
det altto) ex(bto) ) _ (A2 = A)ex, (L, to)ex, (¢, to)

)\16)\1 (t, to) )\26)\2 (t, to)
= Va2 —4fey ex (1, o),

which does not vanish unless o2 — 43 = 0. The solution of the initial value

problem (5.3) is readily verified to be of the form as given above. O]
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In the next three theorems we find solutions of (5.2) involving hyperbolic
functions if o® — 48 > 0, trigonometric functions if a? — 48 < 0, and we

use Theorem 5.1 (i.e., the reduction of order method) to find solutions if

a?—48=0.

Definition 5.1 (Hyperbolic Functions). If —up? is regressive, we define
the hyperbolic functions

eptep
2

€Ep —€_p

h, =
cosh,, 5

and sinh, =

In the following, if f is a function in two variables, we mean by f* the

derivative with respect to the first variable.

Lemma 5.1. If —up? is regressive, then we have
coshﬁ = psinh, and sinhﬁ = pcosh,
and

2 .12
coshp — smhp = e_pp.

Proof. Using Definition 5.1, the first two formulas are easily verified, while

the last formula follows from
2 2
e, +e_ e, — e_
coshﬁ—sinhﬁ = (M) — <u)
2 2

= eyt

= C—pop
€—pup?;

where we have used Theorem 3.1 (vi). O

Theorem 5.3. Suppose o — 43 > 0. Define

a? — 443

(0%
=—— and q=
P="3 a 2
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If p and uB — « are regressive, then a fundamental system of (5.2) is given

by
COShq/(H_up) (-, to)ep(-, to) and Sinhq/(l_wp) (', to)ep(-, to),

where ty € T, and the Wronskian of these two solutions is

qeuﬂfa('a tO)'
The solution of the initial value problem (5.3) is given by

y§ — py

0 .
Yo COShq/(H_“p) (', to) + Slnhq/(H_up) (', to) ep(-, to).

Proof. In this proof we use the convention that

€p = 6;0(" tO)

and similarly for cosh and sinh. We apply Theorem 5.2 to find two solutions

of (5.2) as
eprq and e,
Therefore, we can construct two other solutions of (5.2) by

e +e,_
y, = 10+q2 P4 .nd Yo =

€p+q — €p—gq
2

We use the formulas

q q 1pq
<) =p+ + =p+
p (1 ) P+ : p+q

and

p@<_ q >:p_ ¢ e _
1+ pp I+pp 1+upp
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to obtain, by using Theorem 3.1 (vi)

€ + ey
y = %
_  Sp&(¢/(1+up)) + €p@(—q/(1+up))
2
_ ®Cq/(+up) T EpC—g/(1+pp)
2
_ o Ga/Ctpp) T C-g/(t )
= ¢ 5
= epcoshg/(14up)
and similarly
€ptqg — €p_ )
Y2 = % = epsinhg qyp) -

Next, we find by using Theorem 3.1 (ii) and Lemma 5.1

yr = ey coshgyiiup) €5 coshy
o q 1
= peycoshy(14up) +€5 r,up sinhg (14 p)

= pep coshy/(11yp) +q€psinhy 14 pp)

and similarly
Z/QA = pep sinhg /(14 4p) +q€, coshy 14 pp) -
Use

yi(to) =1, ya(to) =0, yf(to) =D, ZIQA(to) =q

15



16 M. BOHNER AND A. PETERSON
to verify that the above given function indeed solves (5.3). Finally, we find

the Wronskian of y; and y as

Y Yo

W(y1,y2) = det
yt ye

—  det ep COshg/(14p)  €pSInhg/(144p)

qepsinhg/(1yp)  qep COshy (14 pp)
= qei [COShg/ (1+pp) — sinhi/ (1+up)]
= qeie—uqz/(Hup)z
= 9Cp(2+up)®(—pna®/(1+up)?)
= Q€opiu(p2—g2)

= {Cup—a;

where we have used Lemma 5.1. O
Definition 5.2 (Trigonometric Functions). If up? is regressive, we define

the trigonometric functions

€ip + €_ip
2

Eip — €E_jp

cos, = .
P 2i

and sin, =

The proofs of the following Lemma 5.2 and Theorem 5.4 are similar to

the proofs of Lemma 5.1 and Theorem 5.3 and hence will be omitted.

Lemma 5.2. If up? is regressive, then we have

A . A
cos, = —psin, and sin, = pcos,

and

2 | win2
COSy, + SIN, = €yp2.

Theorem 5.4. Suppose o — 43 < 0. Define

/48 — o?

(6]
= —— d =
P B an q 9
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If p,q € R and p is regressive, then a fundamental system of (5.2) is given
by

€0Sq/(1+p) (> T0)€p (-, o) and  sing;4up) (-, fo)ep(-, o),

where ty € T, and the Wronskian of these two solutions is

qeuﬂ—a(‘a tO)'

The solution of the initial value problem (5.3) is given by

Y — Yo

Yo C0Sq/(14up) (- o) + Sig/(14+up) (-5 o) | €5 (-, to)-

Finally, we treat the case that the characteristic equation (5.4) has a
double zero. In this case Theorem 5.2 only gives one solution, while we can

obtain a second linearly independent solution by using Theorem 5.1.
Theorem 5.5. Suppose o? — 43 = 0. Define

P=—§-

If p is regressive, then a fundametal system of (5.2) is given by

t
1
ep(+,t0) and ep(-,to)/ A,

to 1 + p/j’(T)

where ty € T, and the Wronskian of these two solutions is

eupz.

The solution of the initial value problem (5.3) is given by

bOAT
ep(t;to [Zl/o-i' Yo' — PYo /7}
;D( ) ( 0 ) " 1+p/L(T)
Proof. Tt is easy to directly verify all the statements given above. However,

here we show how we obtain the second solution given above using Theorem

5.1. Clearly,

Y1 = ep(-, 1)
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is a solution of (5.2). Now let y, be another solution satisfying the initial

conditions y»(tg) = 0 and y5'(#y) = 1 and consider
W(ep(-t0),y2) = ep(-t0)ys" — €5 (-, 0)ys
= ep('atO)yQA _pep('atO)yQ
= (yQA — py2)ep(-, to).-

On the other hand, by Abel’s Theorem (Theorem 5.1), we have

Wep(20), y2) (1) = Wiep(+ 1), y2) (to)eps—a(t, to) = eup—alt, to).

Hence ¥, is a solution of the first order linear equation

(y™ — py)ey(t, to) = eus alt, to)

or, equivalently according to Theorem 3.1 (vii)

y® =y = eus—ayep(t, to) = ep(t, to).

Since y5(tp) = 0 we have by the variation of constants formula given in

Theorem 4.2 that

yo(t) = /ep(t,U(T))ep(T,to)AT

to

t 1
= eyt o) / — Ar,
t

o 14+ p(m)p

where we have used Theorem 3.1 again. 0J
Finally we will consider the nonhomogeneous equation
(5.5) y>2 +p(t)y® +a(t)y = f(D),

where p and ¢ need not be constant and f is an rd-continuous function. We
remark that a reduction of order technique has been applied in order to find

the solution given in Theorem 5.6 below. However, once the solutions are
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obtained, it is easy to verify that they are indeed solutions, and hence we

will omit the proof of Theorem 5.6.

Theorem 5.6 (Variation of Parameters). Suppose that y1 and yo form a
fundamental set of solutions of the homogeneous equation (5.2). Then the

solution of the initial value problem

(5.5), ylto) =vo, y*(to) =y
s given by

where the constants ¢, and cy are given by

_ 5 (to)yo — y2(to)yd
W (y1, 12)(to)

and
Y1 (to)yss — yi (to)yo
W(yla y2)(t0)

6. NONCONSTANT COEFFICIENTS

Co =

In general, there is no method to solve second order dynamic equations
with arbitrary nonconstant coefficients. However, if one solution is known,
it is possible to use the reduction of order method as discussed in the proof
of Theorem 5.5 to find a second linearly independent solution. We illustrate
this procedure with the dynamic equation (5.1).

For rd-continuous p we put
p® = (-p) - (©p).
Theorem 6.1. Suppose that z is regressive and solves
(6.1) 22+ 29 £ p(t)2” + q(t) = 0.

Then e, (-, ty) solves (5.1).
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Proof. Suppose z solves (6.1) and let z = e, = e,(+,ty). Then

2% = ze, and hence (2°)7 = 2%¢?
and

2% = 26l + zed
= 2867 + e,
2
z

= 2%+ v

14 pz

Altogether we have

2% +p(®) +q2° = (2% +29) el +pzed + gel
= (*+2%2+p°+q)eg
= 0
since z solves (6.1). O

We now will find a second (linearly independent) solution z, of (5.1). Let

x9 be the solution of (5.1) satisfying
Ta(to) =0 and z5(ty) = 1.
Using Theorem 5.1 we obtain

e+ to) [15 — 232] = W(21,22)
= eop(, o)W (w1, 72)(t0)

= eep(', to)
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Therefore, by the quotient rule from Section 2,

( T )A _afeu(s,to) — z0el (-, to)
e, )

("tO ez(',to)eg(',to)

and hence

() = et to) /t 62(69”()7’“2 Ar

T,t() eg( ,t())

t
€2020p (th T)
= e, (t,t Z2®2op 0 1) A7
(°%Al+uwvw>

Hence it is easy to verify the following result.
Theorem 6.2. If z solves equation (6.1), then

A t ezozap(to, T)
e.(t, to) [xo (22 — zoz(to) /t froson ST Ar

is the solution of the initial value problem
(5.1), z(to) =m0, x%(to) = x5

In order to apply Theorem 6.1, it is crucial to find a solution of equation
(6.1). As is checked readily, this is an easy task if (5.1) is of the form (5.2).

Another example, in which (6.1) can be solved explicitly, is given next.

Example 6.1. Let q be constant and regressive and consider the equation
(6.2) 2% — @ (t)2° = 0.
Then a solution of equation (6.1) is given by

z=q.

By Theorem 6.1,

ez (to, T)

b)) and et | G
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form a fundamental system of (6.2). The solution of the initial value prob-
lem

(6.2), x(to) =x0, z°(to) = x5

is given by

ot ) [xo + (22 = quo) /t t ﬂ”))m} .

o, L+qu(r

Finally we consider an equation given in self-adjoint form
(6.3) (p(t)z™)> 4+ ¢(t)z° = 0.

The p given below in Theorem 6.3 is not necessarily a differentiable function
(unless the graininess of the time scale is constant. Hence (6.3) can not be

rewritten in the form (5.1) or (5.2).

Theorem 6.3. Suppose « is regressive. Let p be rd-continuous and non-

vanishing. We put

b S~ SA
b oa ana q=ap—p
Then a fundamental system for (6.3) is given by

eca(t, to) and —p(to)/t %

The Wronskian of these two solutions is

€a (T7 t) €a (7-7 tO) ArT.

p(to)-
Proof. All the claims above are easily verified. O

Ezample 6.2. Suppose « is regressive. We let p = e, (-, %) so that ¢ =0 in
the above Theorem 6.3. Hence we consider the equation

(6.4 (ﬂxA)A ~0.

«
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By Theorem 6.3, a fundamental system for (6.4) is given by
1

ecalyto) and — —— (1 —ecal-t0))-

S] ( 0) (@a)(to)( S) ( 0))

7. EULER-CAUCHY DYNAMIC EQUATIONS
In this section we consider the Fuler-Cauchy dynamic equation
(7.1) to(t)y™® + aty® +by =0 with a,b € R

We will only solve the equation (7.1) for ¢t € T, ¢t > 0. We assume that the
regressivity condition

(7.2) 1- “U“(%) + bt‘; 2((;’;) #0

for t € T, t > 0 is satisfied. The associated characteristic equation of (7.1)
is defined by

(7.3) M4 (a—1DA+b=0.

Theorem 7.1. If the regressivity condition (7.2) is satisfied and the charac-
teristic equation (7.3) has two distinct roots Ay and Xq, then a fundamental
system of (7.1) is given by

eAl/t('atO) and e)\z/t('at()),

where to € T, to > 0. If, in addition, 1+ p(t)3 > 0,7=1,2,t €T, ¢t >
0, then the above exponential functions form a fundamental set of positive

solutions of the Euler-Cauchy dynamic equation (7.1) on T, t > 0.
Proof. Let tg € T, to > 0 and let
y(t) = e/\/t(ta tO)

where we assume that 1+ ()2 # 0 for ¢ € T, ¢t > 0 so that the above

exponential function exists. Then we have

Y (1) = %y(t) and hence 1y (1) = Ay(1).
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Furthermore we find

A

to(t)
A

to(t

YA (t)

and hence

A. PETERSON
y(t) +
y(t) +

o (£)y 2 () = (V= Ay(0).

Therefore we have that

to(t)y>2(t) + aty™ (t) + by(t)

Now assume that A\; and \s are distinc

(7.3). It follows that

/\1—1-)\2:1—@

Then (7.2) implies
A1 Ao 1
1+ a2 ) (1+p0)22) = =
(1+00%) (1+00%) = 3
1
e
1
e
o

does not vanish for ¢t € T, ¢ > 0.

ex\l/t(', tO)

()

(X = N)y(t) + ady(t) + by(t)
(N> = A+ aX +b)y(t)

(N + (@a=DA+b) y(t).

t roots of the characteristic equation

and /\1A2 =b.

(£ + (A1 + Ao)tu(t) + () Aik2)

(£ + (1 — a)tu(t) + b’ (1))

(to(t) — atu(t) + bu’(t))
(1 _an(t) b/f(t))

o(t)  to(t)

t

Hence the exponential functions

and ey, /(- %0)
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are well-defined solutions of the Euler-Cauchy dynamic equation (7.1) on

T, t > 0. Note that

€A_1(t, to) €y (t, t())
t

W [e)\l("t()): 6,\2(‘,t0)] (t) == det t
Mes (tto) e, (t,to)
t t
1
= ;(A2 - Al)e)‘l Ao (t, to)

70T
# 0
for t € T, t > 0 since \; # 9. Hence the exponential functions

ex/t(-t0) and ex, (-5 to)

form a fundamental system of solutions of the Euler-Cauchy dynamic equa-
tion (7.1) on T, ¢t > 0. If the characteristic values A\; and Ay are such that

1+ ,u(t)% >0,72=1,2,t €T, t >0, then the exponential functions

e/\l/t("t()) and e/\2/t("t0)

form a fundamental set of positive solutions of the Euler-Cauchy dynamic

equation (7.1) on T, ¢ > 0. O

Next we consider the Euler-Cauchy dynamic equation in the double root

case.

Theorem 7.2. Assume that o € R and ty € T with ty > 0. If the regres-
stity condition

1 — 2« a?
> "It 5

holds for t € T, t > 0, then a fundamental system of the Fuler-Cauchy

(7.4) pi(t) #0

dynamic equation

(7.5) to(t)y*> + (1 — 20)ty™ + o’y = 0
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18 given by
(t,to) and (tt)/t LA
ea(t, and ea(t, — A7
e 2 Ji T+ ap(r)

forteT, t>0.

Proof. First note that

(1 u)5) (14 ) =14 |5+ Ly + 22D e

(0) i o) t0(0)
_ 1+[O‘0(t);((:)‘_1)t] u(t) 0‘537(2)1) 2(t)

= 4 [ 4 2 e

= 1=+ g 0

for t € T. This implies that the exponentials

ea(-,t) and ei(;t;(-, to)

are well-defined. The chacteristic equation of (7.5) is
N —2a+0a*=0

and so the characteristic roots are A\ = Ay = «. Hence one linearly inde-

pendent solution of (7.5) is

h = 6%(', tO)'

We will now use the method of reduction of order to show how to get a
second linearly independent solution. First note that equation (7.5) can be

written in the form
o2+ p(t)y” +a(t)y =0

where
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It follows that

50+ u0alt) = 2t 2
= S5 -1
e e @
 o(t) t ot
_ o (a—1)
t o(t)

Now let y5(t) be a solution of (7.5) such that

2 @12 (t,%0)

o
t a(t)

W(e%('atﬂ), Y2) = €_piuq(t,to) = €

which we can do by Abel’s Theorem (Theorem 5.1). It follows that

W(@%( s to), y2) . 6%_ (aa_(tl))2 (ta tO)
e%(t, to)e(’% (t,t0) e%(t, to e‘% (t, o)
€42 _ (a-1)2 (ta tO)

Cttou(t)

By the quotient rule we get that y, satisfies the dynamic equation

ya(t) A__ to
e=(t,to) | t+au(t)

Integrating both sides from %y to ¢ and assuming y»(t9) = 0 we have

t ¢ 1
AT N -
t

e%(t, to) s T+ apu(r)
It follows that
t
1
t) = —tpex(t,t —A
ya(t) Oet(’o)/toT-i-Oz,u(T) T

is a solution of (7.5), and since

W(e% ('7 tO)v y2) 7é 07
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we have that

e%('atO) and  yo

form a fundamental set of solutions of (7.5). But this implies that

t
1
ea(t,tg) and ea(t,t — AT
f( 0) f( 0)/tor+a,u(7')
form a fundamental set of solutions of (7.5). O
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