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Abstract

The mathematics of time scales has recently received much attention and holds great
promise in a number of areas. In this paper we propose a new area of mathemat-
ics, namely the theory of stochastic dynamic equations, which unifies the theories
of stochastic differential and difference equations. We give an example involving
stochastic dynamic equations, namely an equation modeling a stock price.
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1 Introduction

The study of time scales in mathematics is an attempt to bridge the divide between the
discrete and the continuous. Introduced by Hilger [3], time scales provides a unified frame-
work for both difference equations and differential equations, and are the subject of the
two books by Bohner and Peterson [1, 2]. In this paper we present an application of time
scales in the field of stochastic dynamic equations with applications to stochastic volatility
models [6].
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The organization of this paper is as follows. Section 2 presents a few core definitions
and concepts of time scales. In Section 3 we define the stochastic integral and in Section 4
we introduce the concept of the stochastic exponential and study its basic properties. Finally
in Section 5 we study geometric Brownian motion on time scales, and an example related
to stock price is given in Section 6. Our attempt is to make the mathematical discussion that
follows as self contained as is practical.

2 Preliminaries, Notation, and Assumptions

An arbitrary nonempty closed subset of the set of the real numbers T is referred to as a time
scale and denoted by T. The most common time scales are T = R for continuous calculus,
T = hZ = {hn : n ∈ Z} with h > 0 for discrete calculus, and T = qN0 = {qn : n ∈ N0} with
q > 1 for quantum calculus. We assume that T is unbounded above and define the forward
jump operator σ : T→ T by

σ(t) = inf{s ∈ T : s > t} for all t ∈ T.

The graininess µ : T→ [0,∞) is defined by

µ(t) = σ(t)− t for all t ∈ T.

In this paper we assume that T is an isolated time scale, i.e., we have µ(t) > 0 for all t ∈ T.
For a function f : T→ R, we define the Hilger derivative f ∆ by

f ∆(t) =
f (σ(t))− f (t)

µ(t)
for all t ∈ T. (2.1)

Throughout we fix t0 ∈ T, let

Tt = [t0, t)∩T for all t ∈ T

and define the Hilger integral byZ t

t0
f (τ)∆τ = ∑

τ∈Tt

µ(τ) f (τ) for all t ∈ T. (2.2)

Finally we say that f is regressive and write f ∈ R provided

f (t) 6=− 1
µ(t)

for all t ∈ T.

The following result is known from [1, Theorem 2.35].

Theorem 2.1. If p ∈ R , then the initial value problem

y∆ = p(t)y, y(t0) = 1, t ∈ T (2.3)

has a unique solution.

The unique solution of (2.3) is denoted by ep(·, t0) and called the exponential function.
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3 Stochastic Integral

Given a time scale T, a collection of measurable real functions X = {X(t) : t ∈ T}, defined
on a measurable space (Ω,F ), will be referred to as a stochastic process indexed by T. For
a fixed point ω∈Ω, the function on T given by t 7→ X(t;ω) is the sample path of the process
X corresponding to ω. A filtration on (Ω,F ) indexed by T is a family {F (t) : t ∈ T} of
sub-sigma algebras of F with the property that F (s)⊆ F (t) for all s and t on T with s < t.
If X(t) is F (t)-measurable for each t ∈ T, then we shall refer to {X(t),F (t) : t ∈ T} as an
adapted stochastic process. Given a stochastic process X indexed by T, the simplest choice
of a filtration is the one generated by the process itself, {F X(t) : t ∈ T}, where F X(t)
denotes the smallest sigma algebra with respect to which X(s) is measurable for all s ∈ T
satisfying s≤ t.

Definition 3.1. A Brownian motion indexed by a time scale T is an adapted stochastic pro-
cess W = {W (t),F (t) : t ∈T}, defined on a probability space (Ω,F ,P), with the following
properties:

1. W (t0) = 0 a.s.,

2. if t0 ≤ s < t and s, t ∈ T, then the increment W (t)−W (s) is independent of F (s) and
is normally distributed with mean zero and variance t− s.

By Definition 3.1, we have that ∆W (t) := W (σ(t))−W (t) is normally distributed with

E[∆W (t)] = 0 and V[∆W (t)] = µ(t) for all t ∈ T. (3.1)

Definition 3.2. For an adapted stochastic process X and a Brownian motion W defined on
some probability space (Ω,F ,P), we introduce the stochastic dynamic integral

Z t

t0
X(τ)∆W (τ) = ∑

τ∈Tt

X(τ)∆W (τ) for all t ∈ T. (3.2)

Definition 3.3. Let X0 be a random variable and X1, X2 be stochastic processes (indexed by
T) such that X2 is adapted. Then

X(t) = X0 +
Z t

t0
X1(τ)∆τ+

Z t

t0
X2(τ)∆W (τ) for all t ∈ T, (3.3)

is called an Itô process, and instead of (3.3) we also write

∆X = X1∆t +X2∆W.

Lemma 3.4. If ∆X = X1∆t +X2∆W, then

X(σ(t)) = X(t)+µ(t)X1(t)+X2(t)∆W (t). (3.4)
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Proof. Since ∆X = X1∆t +X2∆W , we have (3.3), and thus by (2.2) and (3.2),

X(σ(t))−X(t) = X0 +
Z

σ(t)

t0
X1(τ)∆τ+

Z
σ(t)

t0
X2(τ)∆W (τ)

−X0−
Z t

t0
X1(τ)∆τ−

Z t

t0
X2(τ)∆W (τ)

= ∑
τ∈Tσ(t)

X1(τ)µ(τ)+ ∑
τ∈Tσ(t)

X2(τ)∆W (τ)− ∑
τ∈Tt

X1(τ)µ(τ)− ∑
τ∈Tt

X1(τ)∆W (τ)

= X1(t)µ(t)+X2(t)∆W (t)

as Tσ(t) \Tt = {t}. This yields (3.4).

Lemma 3.5. If ∆X = X1∆t +X2∆W and a : T→ R, thenZ t

t0
a∆(τ)X(τ)∆τ+

Z t

t0
a(σ(τ))X1(τ)∆τ+

Z t

t0
a(σ(τ))X2(τ)∆W (τ) = a(t)X(t)−a(t0)X(t0).

(3.5)

Proof. Using Lemma 3.4, (2.1), (2.2) and (3.2), we obtain

a(t)X(t)−a(t0)X(t0) = ∑
τ∈Tt

[a(σ(τ))X(σ(τ))−a(τ)X(τ)]

= ∑
τ∈Tt

[a(σ(τ))X(τ)+a(σ(τ))µ(τ)X1(τ)+a(σ(τ))X2(τ)∆W (τ)−a(τ)X(τ)]

= ∑
τ∈Tt

(a(σ(τ))−a(τ))X(τ)+ ∑
τ∈Tt

µ(τ)a(σ(τ))X1(τ)+ ∑
τ∈Tt

a(σ(τ))X2(τ)∆W (τ)

=
Z t

t0
a∆(τ)X(τ)∆τ+

Z t

t0
a(σ(τ))X1(τ)∆τ+

Z t

t0
a(σ(τ))X2(τ)∆W (τ).

This shows (3.5).

Next we give expectation E and variance V of stochastic dynamic integrals.

Lemma 3.6. If W is a Brownian motion and X is an adapted stochastic process defined on
some probability space (Ω,F ,P), then

E
[Z t

t0
X(τ)∆W (τ)

]
= 0 (3.6)

and

V
[Z t

t0
X(τ)∆W (τ)

]
=

Z t

t0
E
[
X2(τ)

]
∆τ (3.7)

for all t ∈ T.

Proof. To prove (3.6) we observe that (3.2) and (3.1) imply

E
[Z t

t0
X(τ)∆W (τ)

]
= E

[
∑

τ∈Tt

X(τ)∆W (τ)

]
= ∑

τ∈Tt

E [X(τ)∆W (τ)]

= ∑
τ∈Tt

E [X(τ)]E [∆W (τ)] = 0,
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since X(τ) is F (τ)-measurable and ∆W (τ) is independent of F (τ). Next we observe that

E

[(Z t

t0
X(τ)∆W (τ)

)2
]

= E

(∑
τ∈Tt

X(τ)∆W (τ)

)2


= ∑
τ1∈Tt

∑
τ2∈Tt

E [X(τ1)X(τ2)∆W (τ1)∆W (τ2)] .

Now if τ1 < τ2, then ∆W (τ2) is independent of X(τ1)X(τ2)∆W (τ1). Thus,

E [X(τ1)X(τ2)∆W (τ1)∆W (τ2)] = E [X(τ1)X(τ2)∆W (τ1)]E [∆W (τ2)] = 0.

Consequently, (2.2) and (3.1) imply

E

[(Z t

t0
X(τ)∆W (τ)

)2
]

= ∑
τ∈Tt

E
[
X2(τ)(∆W (τ))2]

= ∑
τ∈Tt

E
[
X2(τ)

]
E
[
(∆W (τ))2

]
= ∑

τ∈Tt

E
[
X2(τ)

]
µ(τ) =

Z t

t0
E
[
X2(τ)

]
∆τ,

and this concludes the proof.

4 Stochastic Dynamic Exponential

Definition 4.1. Let W be Brownian motion on T. Then we say an adapted stochastic process
A defined on some probability space (Ω,F ,P) is stochastic regressive (with respect to W )
provided

1+A(t)∆W (t) 6= 0 a.s. for all t ∈ T.

The set of stochastic regressive functions will be denoted by RW . We define the stochastic
circle plus ⊕W on RW by

A⊕W B := A+B+AB∆W on T. (4.1)

Theorem 4.2. (RW ,⊕W ) is an Abelian group.

Proof. To prove closure under the addition ⊕W , we note that, for A,B ∈ RW , A⊕W B is a
function from T to R. It only remains to show that on T, A⊕W B 6= −1/∆W a.s., but this
follows from

1+(A⊕W B)∆W = 1+(A+B+AB∆W )∆W

= (1+A∆W )(1+B∆W ) 6= 0 a.s.

Hence, RW is closed under the addition ⊕W . Since

A⊕W 0 = 0⊕W A = A,
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0 is the additive identity for ⊕W . For A ∈ RW , to find the additive inverse of A under ⊕W ,
we solve A⊕W B = 0 for B, i.e.,

B =− A
1+A∆W

.

That the associative law holds follows from

(A⊕W B)⊕W C = (A+B+AB∆W )⊕W C

= (A+B+AB∆W )+C +(A+B+AB∆W )C∆W

= A+(B+C +BC∆W )+A(B+C +BC∆W )∆W

= A⊕W (B⊕W C)

for A,B,C ∈ RW . Hence, (RW ,⊕W ) is a group. Since

A⊕W B = A+B+AB∆W = B+A+BA∆W = B⊕W A,

the commutative law holds, and hence (RW ,⊕W ) is an Abelian group.

Definition 4.3. For A ∈ RW , the stochastic circle minus 	W on RW is defined as

	W A :=
−A

1+A∆W
on T, (4.2)

and we also put
B	W A := B⊕W (	W A) on T. (4.3)

Theorem 4.4. If A,B ∈ RW , then

(1) 	W (	W A) = A,

(2) A	W B = A−B
1+B∆W ,

(3) A	W A = 0,

(4) A	W B ∈ RW ,

(5) 	W (A	W B) = B	W A,

(6) 	W (A⊕W B) = (	W A)⊕W (	W B).

Proof. Using (4.2), we observe that

	W (	W A) =	W

(
−A

1+A∆W

)
=

−
( −A

1+A∆W

)
1+
( −A

1+A∆W

)
∆W

= A,

where on the first and second equality we have used (4.2). This shows (1). Next, from (4.2),
(4.3) and (4.1), we have

A	W B = A⊕W

(
−B

1+B∆W

)
= A+

(
−B

1+B∆W

)
+A

(
−B

1+B∆W

)
∆W =

A−B
1+B∆W

,
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as claimed in (2), which also implies (3) immediately, and (2) also shows (4) as

1+(A	W B)∆W = 1+
A−B

1+B∆W
∆W =

1+A∆W
1+B∆W

6= 0 a.s.

since A,B ∈ RW . For (5), we observe that

	W (A	W B) =	W

(
A−B

1+B∆W

)
=

−
( A−B

1+B∆W

)
1+
( A−B

1+B∆W

)
∆W

=
B−A

1+A∆W
= B	W A,

where on the first and last equality we have used part (2) and on the second equality we
have used (4.2). Finally, to show (6), we observe that

(	W A)⊕W (	W B) =
(

−A
1+A∆W

)
⊕W

(
−B

1+B∆W

)
=

−A
1+A∆W

+
−B

1+B∆W
+

AB∆W
(1+A∆W )(1+B∆W )

=
−(A+B+AB∆W )

1+(A+B+AB∆W )∆W

=
−(A⊕W B)

1+(A⊕W B)∆W
=	W (A⊕W B),

where we have used (4.1), (4.2) and (2).

Definition 4.5. If t0 ∈ T and A ∈ RW , then the unique solution of

∆X = A(t)X∆W, X(t0) = 1, t ∈ T (4.4)

is called the stochastic exponential and denoted by

X = EA(·, t0). (4.5)

Note that by Definition 3.3,

EA(t, t0) = 1+
Z t

t0
A(τ)EA(τ, t0)∆W (τ) for all t ∈ T. (4.6)

Using this and the following auxiliary result, we will present a closed-form expression for
EA in Theorem 4.7 below.

Lemma 4.6. Let f ,g : T→ R. Then

f (t) = f (t0)+ ∑
τ∈Tt

f (τ)g(τ) for all t ≥ t0 (4.7)

if and only if
f (t) = f (t0) ∏

τ∈Tt

[1+g(τ)] for all t ≥ t0. (4.8)



Stochastic Dynamic Equations 127

Proof. Assume (4.7). We prove (4.8) using the induction principle given in [1, Theorem
1.7]. We denote the statement in (4.8) by S(t) and observe that S(t0) is trivially satisfied.
Now, assuming that S(t) holds, we have

f (σ(t)) = f (t0)+ ∑
τ∈Tσ(t)

f (τ)g(τ)

= f (t0)+ f (t)g(t)+ ∑
τ∈Tt

f (τ)g(τ)

= f (t)g(t)+ f (t) = [1+g(t)] f (t)
= [1+g(t)] f (t0) ∏

τ∈Tt

[1+g(τ)]

= f (t0) ∏
τ∈Tσ(t)

[1+g(τ)] ,

which proves S(σ(t)). Conversely, assume (4.8). Then

f (σ(t)) = f (t0) ∏
τ∈Tσ(t)

[1+g(τ)] = f (t0)[1+g(t)] ∏
τ∈Tt

[1+g(τ)] = f (t)[1+g(t)].

So ∆ f (t) = f (t)g(t), and f (t)− f (t0) = ∑τ∈Tt f (τ)g(τ), which proves (4.7).

From Lemma 4.6, we have the following result.

Theorem 4.7. EA(·, t0) defined in Definition 4.5 is given by

EA(t, t0) = ∏
τ∈Tt

[1+A(τ)∆W (τ)] . (4.9)

Example 4.8. We give the stochastic exponential for various time scales as follows.

1. If T = Z, then

EA(t, t0) =
t−1

∏
τ=t0

[1+A(τ)(W (τ+1)−W (τ))] .

2. If T = hZ with h > 0, then

EA(t, t0) =
t
h−1

∏
τ= t0

h

[1+A(hτ)(W (hτ+h)−W (hτ))] .

3. If T = qN0 with q > 1, then

EA(t, t0) =
logq t−1

∏
τ=logq t0

[
1+A(qτ)

(
W
(
qτ+1)−W (qτ)

)]
.

Remark 4.9. If T = R and A(t) = a(t) is deterministic, then we define Ea(·, t0) as the solu-
tion of the stochastic differential problem

dX = a(t)XdW, X(t0) = 1, t ∈ R,
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which is well known [4, 5] to be

Ea(t, t0) = exp
(
−1

2

Z t

t0
a2(s)ds+

Z t

t0
a(s)dW (s)

)
, t ∈ R. (4.10)

Although our theory and formulas presented below are proved only for isolated time scales,
we may see that all of our formulas, using (4.10), remain true for T = R.

Theorem 4.10. If A,B ∈ RW , then

(1) EA(σ(t), t0) = (1+A(t)∆W (t))EA(t, t0),

(2) 1
EA(t,t0)

= E	W A(t, t0),

(3) EA(t, t0)EB(t, t0) = EA⊕W B(t, t0),

(4) EA(t,t0)
EB(t,t0)

= EA	W B(t, t0).

Proof. We use Theorem 4.7. First,

EA(σ(t), t0) = ∏
τ∈Tσ(t)

[1+A(τ)∆W (τ)]

= (1+A(t)∆W (t)) ∏
τ∈Tt

[1+A(τ)∆W (τ)]

= (1+A(t)∆W (t))EA(t, t0)

shows (1), and (2) follows from

E	W A(t, t0) = ∏
τ∈Tt

[1+(	W A)(τ)∆W (τ)]

= ∏
τ∈Tt

[
1− A(τ)

1+A(τ)∆W (τ)
∆W (τ)

]
=

1

∏
τ∈Tt

[1+A(τ)∆W (τ)]

=
1

EA(t, t0)
.

For (3), we observe that

EA(t, t0)EB(t, t0) = ∏
τ∈Tt

[1+A(τ)∆W (τ)] ∏
τ∈Tt

[1+B(τ)∆W (τ)]

= ∏
τ∈Tt

[
1+A(τ)∆W (τ)+B(τ)∆W (τ)+A(τ)B(τ)(∆W (τ))2]

= ∏
τ∈Tt

[1+(A(τ)+B(τ)+A(τ)B(τ)∆W (τ))∆W (τ)]

= ∏
τ∈Tt

[1+(A⊕W B)(τ)∆W (τ)]

= EA⊕W B(t, t0),
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and (4) follows from

EA	W B(t, t0) = ∏
τ∈Tt

[
1+
(

A(τ)−B(τ)
1+B(τ)∆W (τ)

)
∆W (τ)

]

=
∏
τ∈Tt

[1+A(τ)∆W (τ)]

∏
τ∈Tt

[1+B(τ)∆W (τ)]

=
EA(t, t0)
EB(t, t0)

.

This completes the proof.

We conclude this section by offering formulas for the expectation and variance of the
stochastic exponential in Theorem 4.12 below. We first present the following auxiliary
result.

Lemma 4.11. If A is adapted, then EA(·, t0) is adapted.

Proof. We use an induction argument given in [1, Theorem 1.7]. Denote the statement that
EA(t, t0) is F (t)-measurable by S(t). It is clear that S(t0) is true. Assume that S(t) holds.
By Theorem 4.10 (1) we have

EA(σ(t), t0) = [1+A(t)∆W (t)]EA(t, t0).

Now A(t) is F (t)-measurable and ∆W (t) is F (σ(t))-measurable imply that 1+A(t)∆W (t)
is F (σ(t))-measurable. Since EA(t, t0) is F (t)-measurable by assumption, we have that
EA(σ(t), t0) is F (σ(t))-measurable, which proves S(σ(t)).

Theorem 4.12. If EA(·, t0) is given as in Definition 4.5 and A is adapted, then

E [EA(t, t0)] = 1 (4.11)

and if, moreover, A and EA(t, t0) are independent, then

V [EA(t, t0)] = eE[A2](t, t0)−1. (4.12)

Proof. Taking expectation on both sides of (4.6), i.e., of

EA(t, t0) = 1+
Z t

t0
A(τ)EA(τ, t0)∆W (τ),

we have

E [EA(t, t0)] = 1+E
[Z t

t0
A(τ)EA(τ, t0)∆W (τ)

]
= 1, (4.13)

where on the second equality we have used (3.6) and Lemma 4.11. Likewise,

E
[
E2

A(t, t0)
]

= 1+2E
[Z t

t0
A(τ)EA(τ, t0)∆W (τ)

]
+V

[Z t

t0
A(τ)EA(τ, t0)∆W (τ)

]
= 1+

Z t

t0
E
[
(A(τ)EA(τ, t0))

2
]

∆τ

= 1+
Z t

t0
E
[
A2(τ)

]
E
[
E2

A(τ, t0)
]

∆τ,
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where we have used (3.6), (3.7) and Lemma 4.11. If we take y(t) = E
[
E2

A(t, t0)
]
, then y sat-

isfies the initial value problem y∆ = E
[
A2(t)

]
y, y(t0) = 1, whose solution from Theorem 2.1

is y(t) = eE[A2](t, t0). Using this fact, we conclude that

E
[
E2

A(t, t0)
]
= eE[A2](t, t0),

and we have

V [EA(t, t0)] = E
[
E2

A(t, t0)
]
− (E [EA(t, t0)])

2 = eE[A2](t, t0)−1,

as claimed.

5 Dynamic Geometric Brownian Motion

In this section, we construct and study the properties of geometric Brownian motion on a
time scale T. Let us consider the homogeneous linear stochastic dynamic equation

∆X = a(t)X∆t +b(t)X∆W, (5.1)

where a,b : T→R, X is defined on some probability space (Ω,F ,P), and W is a Brownian
motion indexed by T. Obviously, X(t)≡ 0 is a solution of (5.1).

Theorem 5.1. If t0 ∈ T, a ∈ R and b
1+µa ∈ RW , then the unique solution of

∆X = a(t)X∆t +b(t)X∆W, X(t0) = X0 (5.2)

is given by

X = X0ea(·, t0)E b
1+µa

(·, t0). (5.3)

Proof. Let X(t) = X0ea(t, t0)E b
1+µa

(t, t0). Then X(t0) = X0 and

X(t0)+
Z t

t0
a(τ)X(τ)∆τ+

Z t

t0
b(τ)X(τ)∆W (τ)

= X0 +X0

Z t

t0
a(τ)ea(τ, t0)E b

1+µa
(τ, t0)∆τ+X0

Z t

t0
b(τ)ea(τ, t0)E b

1+µa
(τ, t0)∆W (τ)

= X0

{
1+

Z t

t0
e∆

a (τ, t0)E b
1+µa

(τ, t0)∆τ+
Z t

t0
ea(σ(τ), t0)

b(τ)
1+µ(τ)a(τ)

E b
1+µa

(τ, t0)∆W (τ)
}

= X0

{
1+ ea(t, t0)E b

1+µa
(t, t0)− ea(t0, t0)E b

1+µa
(t0, t0)

}
= X0ea(t, t0)E b

1+µa
(t, t0) = X(t),
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where on the third equality we have used Lemma 3.5 with X1 ≡ 0. For the converse assume
that X solves (5.2). Assuming X0 6= 0, define Y = X

X0
e	a(·, t0). Then Y (t0) = 1 and

1+
Z t

t0

b(τ)
1+µ(τ)a(τ)

Y (τ)∆W (τ) = 1+
1
X0

Z t

t0

b(τ)
1+µ(τ)a(τ)

e	a(τ, t0)X(τ)∆W (τ)

= 1+
1
X0

Z t

t0
e	a(σ(τ), t0)b(τ)X(τ)∆W (τ)

= 1+
1
X0

{
e	a(t, t0)X(t)− e	a(t0, t0)X(t0)−

Z t

t0
e∆
	a(τ, t0)X(τ)∆τ

−
Z t

t0
e	a(σ(τ), t0)a(τ)X(τ)∆τ

}
= 1+

1
X0

{
e	a(t, t0)X(t)−X0−

Z t

t0
(	a)(τ)e	a(τ, t0)X(τ)∆τ

−
Z t

t0
(1+µ(τ)(	a)(τ))e	a(τ, t0)a(τ)X(τ)∆τ

}
= 1+

1
X0

{
e	a(t, t0)X(t)−X0−

Z t

t0

(
(	a)(τ)+

a(τ)
1+µ(τ)a(τ)

)
e	a(τ, t0)X(τ)∆τ

}
= 1+

X(t)
X0

e	a(t, t0)−1

=
X(t)
X0

e	a(t, t0) = Y (t),

where on the third equality we have used Lemma 3.5. Hence Y = E b
1+µa

(·, t0) and thus

X = X0ea(·, t0)E b
1+µa

(·, t0).

In the proof above we have not used Itô’s lemma which is usually employed when
T = R.

Example 5.2. Using Example 4.8 and Theorem 5.1, we now present the solution of (5.2)
on various time scales.

1. If T = Z, then

X(t) = X0

t−1

∏
τ=t0

[1+a(τ)+b(τ)(W (τ+1)−W (τ))] ,

if a(τ) 6=−1 for all τ ∈ Z.

2. If T = hZ with h > 0, then

X(t) = X0

t
h−1

∏
τ= t0

h

[1+ha(hτ)+b(hτ)(W (hτ+h)−W (hτ))] ,

if a(hτ) 6=−1
h for all τ ∈ Z.
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3. If T = qN0 with q > 1, then

X(t) = X0

logq t−1

∏
τ=logq t0

[
1+(q−1)qτa(qτ)+b(qτ)

(
W (qτ+1)−W (qτ)

)]
,

if qτa(qτ) 6= 1
1−q for all τ ∈ N0.

Remark 5.3. If T = R, then (5.2) becomes

dX = a(t)Xdt +b(t)XdW, X(t0) = 1 (5.4)

whose solution is well known [4, 5] to be

X(t) = exp
(Z t

t0

(
a(s)− 1

2
b2(s)

)
ds+

Z t

t0
b(s)dW (s)

)
. (5.5)

Note that in this case (5.3) becomes

X(t) = ea(t, t0)Eb(t, t0)

= exp
(Z t

t0
a(s)ds

)
exp
(
−1

2

Z t

t0
b2(s)ds+

Z t

t0
b(s)dW (s)

)
= exp

(Z t

t0

(
a(s)− 1

2
b2(s)

)
ds+

Z t

t0
b(s)dW (s)

)
,

which is the same as (5.5). Hence our solution formula (5.3) is valid for T = R as well.

6 A Stock Price Model

Let S(t) denote the price of a stock at time t and S(t0) = S0 the current price of the stock.
Then the evolution of S(t) in time may be modeled by supposing that ∆S/S, the relative
change in price, evolves according to the stochastic dynamic equation

∆S
S

= α(t)∆t +β(t)∆W, S(t0) = S0 > 0

such that α ∈ R and β

1+µα
∈ RW , called the drift and the volatility of the stock. Then

∆S = α(t)S∆t +β(t)S∆W, (6.1)

which is same as (5.1), and so by (5.3) we have

S(t) = S0eα(t, t0)E β

1+µα

(t, t0). (6.2)

Thus,

E[S(t)] = E
[

S0eα(t, t0)E β

1+µα

(t, t0)
]

= S0eα(t, t0)E
[

E β

1+µα

(t, t0)
]

= S0eα(t, t0), (6.3)
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where on the third equality we have used (4.11) of Theorem 4.12. We can also arrive at
(6.3) by rewriting (6.1), using Definition 3.3, as

S(t) = S(t0)+
Z t

t0
α(τ)S(τ)∆τ+

Z t

t0
β(τ)S(τ)∆W (τ)

and calculating

E[S(t)] = E[S(t0)]+E
[Z t

t0
α(τ)S(τ)∆τ

]
+E

[Z t

t0
β(τ)S(τ)∆W (τ)

]
= S0 +

Z t

t0
α(τ)E[S(τ)]∆τ,

where we have (note that S is adapted because of (6.2) and Lemma 4.11) used (3.6). If we
take y(t) = E[S(t)], then this is a first-order homogeneous linear dynamic equation of the
form y∆ = α(t)y, y(t0) = y0, whose solution by Theorem 2.1 is y(t) = eα(t, t0)y0. Using this
fact, we conclude that

E[S(t)] = S0eα(t, t0). (6.4)

For the variance of the stock price, we observe that

V[S(t)] = E[S2(t)]− (E[S(t)])2

= S2
0e2

α(t, t0)E
[

E2
β

1+µα

(t, t0)
]
−
(

S0eα(t, t0)E
[

E β

1+µα

(t, t0)
])2

= S2
0e2

α(t, t0)V
[

E β

1+µα

(t, t0)
]

= S2
0e2

α(t, t0)
(

e β2

(1+µα)2
(t, t0)−1

)
, (6.5)

where on the third equality we have used (4.12) of Theorem 4.12.

Example 6.1. From (6.4), the expected values of the stock price at time t for various time
scales are given as follows.

1. If T = Z, then

E[S(t)] = S0

t−1

∏
τ=t0

(1+α(τ)) if α(τ) 6=−1 for all τ ∈ Z

and
E[S(t)] = S0(1+α)t−t0 for constant α 6=−1.

2. If T = hZ with h > 0, then

E[S(t)] = S0

t
h−1

∏
τ= t0

h

(1+hα(hτ)) if α(hτ) 6=−1
h for all τ ∈ Z

and
E[S(t)] = S0(1+hα)

t−t0
h for constant α 6=−1

h .
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3. If T = qN0 with q > 1, then

E[S(t)] = S0

logq t−1

∏
τ=logq t0

(1+(q−1)qτ
α(qτ)) if qτα(qτ) 6= 1

1−q for all τ ∈ N0.

Remark 6.2. If T = R, then it is well known [4, 5] that

E[S(t)] = S0e
R t

t0
α(τ)dτ for continuous α

and
E[S(t)] = S0eα(t−t0) for constant α.

Note that these formulas are matching with our formula (6.4), and hence (6.4) is valid for
T = R also.

Example 6.3. From (6.5), the variances of the stock price at time t for various time scales
are given as follows.

1. If T = Z, then

V[S(t)] = S2
0

[
t−1

∏
τ=t0

(1+α(τ))2

][
t−1

∏
τ=t0

(
1+

β2(τ)
(1+α(τ))2

)
−1

]
if α(τ) 6=−1 for all τ ∈ Z and

V[S(t)] = S2
0(1+α)2(t−t0)

[(
1+

β2

(1+α)2

)t−t0

−1

]
for constants β and α 6=−1.

2. If T = hZ with h > 0, then

V[S(t)] = S2
0

 t
h−1

∏
τ= t0

h

(1+hα(hτ))2

 t
h−1

∏
τ= t0

h

(
1+

hβ2(hτ)
(1+hα(hτ))2

)
−1


if α(hτ) 6=−1

h for all τ ∈ Z and

V[S(t)] = S2
0(1+hα)

2(t−t0)
h

(1+
hβ2

(1+hα)2

) t−t0
h

−1


for constants β and α 6=−1

h .

3. If T = qN0 with q > 1, then

V[S(t)] = S2
0

logq t−1

∏
τ=logq t0

(
(1+(q−1)qτ

α(qτ))2 +(q−1)qτ
β

2 (qτ)
)

−S2
0

logq t−1

∏
τ=logq t0

(1+(q−1)qτ
α(qτ))2

if qτα(qτ) 6= 1
1−q for all τ ∈ N0.
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Remark 6.4. If T = R, then it is well known [4, 5] that

V[S(t)] = S2
0e2

R t
t0

α(τ)dτ
[
e

R t
t0

β2(τ)dτ−1
]

for continuous α and β, and

V[S(t)] = S2
0e2α(t−t0)

[
eβ2(t−t0)−1

]
for constant α and β. Note that these formulas are matching with our formula (6.5), and
hence (6.5) is valid for T = R also.
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