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Abstract This paper discusses utility functions for money, where allowable
money values are from an arbitrary nonempty closed subset of the real num-
bers. Thus the classical case, where this subset is a closed interval (bounded
or not) of the real line, is included in the study. The discrete case, where this
subset is the set of all integer numbers, is also included. In a sense the discrete
case (which has not been addressed in the literature thus far) is more suitable
for real-world applications than the continuous case. In this general setting,
the concepts of risk aversion and risk premium are defined, an analogue of
Pratt’s fundamental theorem is proved, and temperance, prudence, and risk
vulnerability are examined.
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1 Introduction

Expected utility analysis has been the work horse for decision-making under
risk. [Arrow(1965)] and [Pratt(1964)] (see also [Machina(1987)]) presented a
path-breaking work in which they define a utility function property that guar-
antees intuitive behaviorial results in a class of economic decision problems,
under the assumption that economic agents exhibit risk-averse behavior, i.e.,
the utility function is strictly increasing and concave on the set of all wealth
levels. In particular, [Arrow(1976)] showed that in portfolios of one risky and
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one riskless asset such that the expected value of the return of the risky asset
is larger than the return of the riskless asset, the optimal quantity of the risky
asset held is positive and increasing in the wealth level if and only if the utility
function u exhibits the property that −u′′(w)/u′(w) is decreasing in w. This
property is commonly referred to as Arrow–Pratt DARA (decreasing absolute
risk aversion).

[Pratt(1964)] analyzed the problem of optimal insurance payments for
individuals facing unwanted risks. In particular, he showed that, if we define
the risk premium π∗, for a mean-zero risk ε̃ added to initial wealth w0, by
E(u(w0 + ε̃)) = u(w0 − π∗), then π∗ is a decreasing function of w0 if and only
if u exhibits Arrow–Pratt DARA.

Since this seminal work, a number of researchers have extended the Arrow–
Pratt results by replacing the assumption of fixed initial wealth with the more
general case of random initial wealth. For instance, [Gollier and Pratt(1996)]
define a utility function property called “risk vulnerability”. Defining π∗ and
Π∗ by E(u(w+X)) = u(w−π∗) and E(u(w+X+Y )) = E(u(w+Y −Π∗)) and
assuming E(Y ) ≤ 0, Π∗ ≥ π∗ for all w is equivalent to u being risk vulnerable.
[Gollier and Pratt(1996)] show that if u exhibits Arrow–Pratt DARA, then
t ≥ r(2− r/p) is sufficient for u being risk vulnerable, where p, the coefficient
of absolute prudence, equals −u′′′(w)/u′′(w) and t, the coefficient of absolute
temperance, equals −u′′′′(w)/u′′′(w).

The work of Arrow and Pratt, and the many researchers who have la-
bored to extend their results to a broader class of risk problems, has created
a rich tapestry within expected utility theory. However, one weakness of the
traditional approach is the assumption that money, the domain of our utility
functions, can be represented as a continuous variable. While this assumption
allows us to use traditional calculus in our analysis, it is in fact unrealistic as it
is impractical to talk of

√
2 dollars. Money is best modelled as a discrete set of

integers (cents, for instance) rather than as a continuous set of real numbers.
What is needed is an approach that would allow for a calculus-based analysis
on a discrete domain.

A solution to the problem of unifying continuous and discrete analysis
can be found in the theory of time scales. Time scale analysis was intro-
duced by Stefan Hilger in 1988, see [Hilger(1990), Hilger(1988)]. The the-
ory allows for the performance of calculus on functions, where the domain
can be an arbitrary nonempty closed subset of the real numbers. The time
scale calculus has been applied to problems in a number of areas, includ-
ing biology (see, e.g., [Bohner and Warth(2007), Bohner et al(2007)Bohner,
Fan, and Zhang]), engineering (see, e.g., [Bohner and Martynyuk(2007),Kloe-
den and Zmorzynska(2006),Sheng(2005)]), and physics (see, e.g., [Bohner and
Ünal(2005),Bekker et al(2010)Bekker, Bohner, Herega, and Voulov]).

Time scale analysis also has been applied to problems in business and eco-
nomics. For instance, [Atıcı et al(2006)Atıcı, Biles, and Lebedinsky] apply a
calculus of variations model based on time scales to a dynamic optimization
problem with a consumer seeking to maximize lifetime utility under consump-
tion constraints. [Atıcı and Uysal(2008)] use the same calculus of variations
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on time scales applied to the problem of optimal production and inventory
paths. [Tisdell and Zaidi(2008), Section 6] present another short application
to a simple model from economics, known as the Keynesian–Cross model with
lagged income. However, there has not been to date an application of time
scale calculus to the economic problems of decision making under risk and
expected utility analysis. The current paper represents a first contribution to
this area.

The set up of this paper is as follows. In the next section we recall some
basic properties from the calculus on time scales (see [Bohner and Peter-
son(2001),Bohner and Peterson(2003)]), but only those that are essential for
the studies in this paper and only in a very dense form. Examples for the three
most important cases of time scales are given in Section 2 as well. In Section 3
we introduce the concepts of risk aversion and risk premium of a utility func-
tion and give the main definitions used in this paper, state the main theorem,
and illustrate it with some examples. Section 4 contains the proof of Jensen’s
inequality, which is interesting in its own right and is needed in the proof of the
main theorem. This proof is presented in Section 4 using a series of auxiliary
results. Section 5 discusses applications and examples, and we also prove that
the risk aversion is dominated by the reciprocal of the graininess in the case of
isolated time scales. In Section 6 we introduce the time scales analogue of risk
vulnerability and exhibit various conditions that are sufficient for the utility
function to be risk vulnerable. Some of these conditions involve the coefficients
of absolute temperance and prudence, which are introduced in Section 6 as
well (see also [Maggi et al(2006)Maggi, Magnani, and Menegatti]). Finally,
an appendix supplies some results instrumental in proving the required time
scales version of Jensen’s inequality.

Time scales analogues of many results concerning risk aversion and risk
vulnerability from the two papers [Pratt(1964), Gollier and Pratt(1996)] are
included in our study. This combines two active areas of research, namely the
study of dynamic equations on time scales in mathematics (see [Bohner and
Peterson(2001), Bohner and Peterson(2003)]) and the study of utility func-
tions and risk aversion in economics (see [Gollier(2001)]). Just like the pa-
pers [Pratt(1964),Gollier and Pratt(1996)] initiated much research (see [Dia-
mond and Gelles(1995),Diamond and Gelles(1999),Gelles and Mitchell(1999),
Kihlstrom et al(1981)Kihlstrom, Romer, and Williams, Kimball(1990), Kim-
ball(1993),Machina and Neilson(1987),Pratt and Zeckhauser(1987)] for a small
selection), we anticipate that this paper will be the foundation for further stud-
ies in this area.

2 Time Scales Calculus

In this section we will give the rules necessary for the time scales related
calculations in this paper. For their proofs and further details we refer the
reader to [Bohner and Peterson(2001),Bohner and Peterson(2003)].
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2.1 Time Scales

A time scale is an arbitrary nonempty closed subset of the real numbers. It is
usually denoted by T. Elements in T are usually denoted by t, as they represent
time. In this paper, however, the elements should represent money rather than
time and are therefore denoted by x, while the “time scale” itself is denoted
by X. Some examples of such sets X are the real numbers R, the integers Z,
hZ = {hk : k ∈ Z} with h > 0, and qN0 = {qk : k ∈ N0} with q > 1.

2.2 Jump Operators

The forward and backward jump operators σ : X → X and ρ : X → X are
defined by

σ(x) = inf {y ∈ X : y > x} and ρ(x) = sup {y ∈ X : y < x}

for all x ∈ X, where we put inf ∅ := sup X and sup ∅ := inf X. For a function
f : X → R, we write fσ = f ◦ σ.

2.3 Graininess

The graininess µ : X → [0,∞) is defined by

µ(x) = σ(x)− x for all x ∈ X.

2.4 (Delta) Derivative

Put Xκ := X if sup X = ∞; otherwise put Xκ := X \ (ρ(sup X), sup X]. For
f : X → R, the derivative f∆(x) at x ∈ Xκ is defined to be the number (if it
exists) with the property that for any ε > 0 there exists a neighborhood U of
x such that

|f(σ(x))− f(y)− f∆(x)(σ(x)− y)| ≤ ε|σ(x)− y| for all y ∈ U ∩ X.

The function f is called differentiable if f∆(x) exists for each x ∈ Xκ. In this
case, the derivative function of f is denoted by f∆ : Xκ → R.

2.5 Integral

If F : X → R is an antiderivative of f : X → R, i.e., F∆ = f on Xκ, then the
integral of f is defined by∫ y

x

f(ξ)∆ξ = F (y)− F (x) for all x, y ∈ X (1)

(note that by [Bohner and Peterson(2001), Corollary 1.68 (iii)] the integral
does not depend on the particular choice of F ).
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2.6 Some Formulas

Here we collect some of the time scales results that will be frequently used in
this paper. In Theorem 1 below, propositions (a)–(f) are, respectively, [Bohner
and Peterson(2001), Theorems 1.16 (iv), 1.20 (i), (iii), (v), 1.93, and 1.97] and
proposition (g) is [Bohner and Peterson(2003), Theorem 1.17].

Theorem 1 (a) Simple Useful Formula: If f : X → R is differentiable, then

fσ = f + µf∆. (2)

(b) Sum Rule: If f, g : X → R are differentiable, then so is f + g, and

(f + g)∆ = f∆ + g∆. (3)

(c) Product Rule: If f, g : X → R are differentiable, then so is fg, and

(fg)∆ = f∆gσ + fg∆ = f∆g + fσg∆. (4)

(d) Quotient Rule: If f, g : X → R are differentiable and ggσ 6= 0, then so is
f/g, and (

f

g

)∆

=
f∆g − fg∆

ggσ
. (5)

(e) Chain Rule: Assume that g : X → R is strictly increasing and let Y = g(X)
be a time scale. Let f : Y → R. If g∆x and f∆y ◦ g exist on Xκ, then f ◦ g
is differentiable, and

(f ◦ g)∆x = (f∆y ◦ g)g∆x . (6)

(f) Derivative of the Inverse: Assume that g : X → R is strictly increasing and
let Y = g(X) be a time scale. If g : X → Y is differentiable, then so is
g−1 : Y → X, and

(g−1)∆y =
1

g∆x
◦ g−1 (7)

at points where g∆x is different from zero.
(g) Mean Value Inequality: Let a, b ∈ X. If f, g : X → R are continuous func-

tions on [a, b] ∩ X which are differentiable on [a, b) ∩ X such that g∆ > 0
on [a, b) ∩ X, then there exist ξ, τ ∈ [a, b) ∩ X such that

f∆

g∆
(τ) ≤ f(b)− f(a)

g(b)− g(a)
≤ f∆

g∆
(ξ). (8)
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2.7 Exponential Function

The exponential function ep(·, x0) is defined to be the unique solution of the
initial value problem

f∆(x) = p(x)f(x), f(x0) = 1, x ∈ Xκ,

where x0 ∈ X and p : X → R is continuous and regressive, i.e., 1+µ(x)p(x) 6= 0
for all x ∈ X. This is denoted by p ∈ R. We say p is positively regressive and
write p ∈ R+ if 1 + µ(x)p(x) > 0 for all x ∈ X. If p ∈ R+, then ep(x, x0) > 0
for all x ∈ X. For more details, see [Bohner and Peterson(2001), Section 2.2].

2.8 Examples

The most important time scales are R and Z. Let a < b. For X = R, we have

σ(x) = x, µ(x) = 0, f∆(x) = f ′(x),
∫ b

a

f(x)∆x =
∫ b

a

f(x)dx

and

ep(x, y) = exp
{∫ x

y

p(ξ)∆ξ

}
, eα(x, 0) = eαx.

For X = Z, we have

σ(x) = x+1, µ(x) = 1, f∆(x) = f(x+1)−f(x),
∫ b

a

f(x)∆x =
b−1∑

a

f(x),

and

ep(x, y) =
x−1∏
ξ=y

{1 + p(ξ)} for y < x, eα(x, 0) = (1 + α)x.

For X = qN0 with q > 1, we have

σ(x) = qx, µ(x) = (q − 1)x, f∆(x) =
f(qx)− f(x)

(q − 1)x
,

∫ b

a

f(x)∆x = (q − 1)
logq b−1∑
k=logq a

qkf(qk),

and

ep(x, y) =
logq x−1∏
k=logq y

{
1 + (q − 1)qkp(qk)

}
for y < x.
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3 Comparative Risk Aversion Theorem

In this section we introduce the main notions and present a version of Pratt’s
comparative risk aversion theorem. The proof of this theorem will be given in
Section 4. Throughout this paper, we will use the notation and assumptions
as introduced in the following definition.

Definition 1 Let X and Y be time scales.

(a) A function u : X → Y with u(X) = Y is called a risk-averse utility function
(henceforth utility function) if it is twice differentiable, strictly increasing
(i.e., u∆ > 0 on Xκ), and concave (i.e., u∆∆ ≤ 0 on Xκκ := (Xκ)κ).
Moreover, when higher derivatives of utility functions occurring in this
paper are needed, we assume that they exist.

(b) The risk aversion coefficient r of a utility function u is defined by

r(x) = −u∆∆(x)
u∆(x)

for x ∈ Xκκ.

(c) The risk premium π for a utility function u is defined by

π(X) = E(X)− u−1(bE(u(X))cY)

for any random variable X with values in X (throughout, any random
variable occurring in this paper assumes an underlying probability space
(Ω,A, P ), which is always understood since it is enough to know the proba-
bility law of the random variable — it is also assumed that all expectations
of random variables occurring in this paper are finite), where we define

bxcY = sup {y ∈ Y : y ≤ x} for x ∈ R

(note that bxcY ∈ Y = u(X) since Y is closed and since sup ∅ = inf Y).
(d) The probability premium for a utility function u is defined by

p(x1, x2, x3) =
2u(x2)− u(x1)− u(x3)

u(x3)− u(x1)

for x1, x2, x3 ∈ X with x1 ≤ x2 ≤ x3 and x1 < x3.
(e) The Pratt function for a utility function u is defined by

ϕ(x1, x2, x3, x4) =
u(x4)− u(x3)
u(x2)− u(x1)

for x1, x2, x3, x4 ∈ X with x1 < x2 ≤ x3 < x4.

The main result in this paper is the following analogue of [Pratt(1964),
Theorem 1].

Theorem 2 Let X, Y1, and Y2 be time scales. Let ri, πi, pi, and ϕi, i ∈ {1, 2},
be the functions introduced in Definition 1 for two given twice continuosly
differentiable utility functions u1 : X → Y1 and u2 : X → Y2 with u1(X) = Y1

and u2(X) = Y2. Then the following conditions are equivalent.



8

(a) r1 ≥ r2.
(b) π1 ≥ π2.
(c) p1 ≥ p2.
(d) ϕ1 ≤ ϕ2.
(e) u∆

2 /u∆
1 is increasing.

(f) u1 ◦ u−1
2 is concave.

The following example explains Theorem 2 in the finite case.

Example 1(i) Let X = {1, 2, 4, 8} and define

u1(1) = 4, u1(2) = 5, u1(4) = 6, u1(8) = 7

and
u2(1) = 1, u2(2) = 3, u2(4) = 6, u2(8) = 10.

Hence Y1 = {4, 5, 6, 7} and Y2 = {1, 3, 6, 10}. Thus we have

u∆
1 (1) =

5− 4
2− 1

= 1, u∆
1 (2) =

6− 5
4− 2

=
1
2
, u∆

1 (4) =
7− 6
8− 4

=
1
4
,

u∆
2 (1) =

3− 1
2− 1

= 2, u∆
2 (2) =

6− 3
4− 2

=
3
2
, u∆

2 (4) =
10− 6
8− 4

= 1,

u∆∆
1 (1) =

1
2 − 1
2− 1

= −1
2
, u∆∆

1 (2) =
1
4 −

1
2

4− 2
= −1

8
,

u∆∆
2 (1) =

3
2 − 2
2− 1

= −1
2
, u∆∆

2 (2) =
1− 3

2

4− 2
= −1

4
.

Hence
r1(1) =

1
2
, r2(1) =

1
4

so that r1(1) ≥ r2(1)

and
r1(2) =

1
4
, r2(2) =

1
6

so that r1(2) ≥ r2(2).

Thus r1 ≥ r2. Moreover, u∆
2 /u∆

1 is increasing. Indeed,

u∆
2 (1)

u∆
1 (1)

= 2,
u∆

2 (2)
u∆

1 (2)
= 3, and

u∆
2 (4)

u∆
1 (4)

= 4.

Now we verify that u1 ◦ u−1
2 is concave. Indeed,

(u1◦u−1
2 )(1) = 4, (u1◦u−1

2 )(3) = 5, (u1◦u−1
2 )(6) = 6, (u1◦u−1

2 )(10) = 7

so that

(u1 ◦ u−1
2 )∆2(1) =

5− 4
3− 1

=
1
2
, (u1 ◦ u−1

2 )∆2(3) =
6− 5
6− 3

=
1
3
,

(u1 ◦ u−1
2 )∆2(6) =

7− 6
10− 6

=
1
4
, (u1 ◦ u−1

2 )∆2∆2(1) =
1
3 −

1
2

3− 1
= − 1

12
≤ 0,
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and

(u1 ◦ u−1
2 )∆2∆2(2) =

1
4 −

1
3

6− 3
= − 1

36
≤ 0.

Next, we will check Theorem 2 (c) and (d), but only for one set of arguments
each:

p1(1, 2, 4) =
2u1(2)− u1(1)− u1(4)

u1(4)− u1(1)
= 0,

p2(1, 2, 4) =
2u2(2)− u2(1)− u2(4)

u2(4)− u2(1)
= −1

5
,

ϕ1(1, 2, 4, 8) =
u1(8)− u1(4)
u1(2)− u1(1)

=
7− 6
5− 4

= 1,

ϕ2(1, 2, 4, 8) =
u2(8)− u2(4)
u2(2)− u2(1)

=
10− 6
3− 1

= 2.

Finally, we illustrate Theorem 2 (b) by choosing a random variable X which
assumes the value 1 with probability 1/7, the value 2 with probability 1/2,
and the value 8 with probability 5/14. Then E(X) = 4,

E(u1(X)) =
39
7

, bE(u1(X))cY1
= 5 so that π1 = 2

and

E(u2(X)) =
73
14

, bE(u2(X))cY2
= 3 so that π2 = 2.

(ii) In (i), π1 = π2, but it is possible that π1 > π2. Indeed, let X = {0, 1, 2, 3}
and define

u1(0) = 0, u1(1) = 2, u1(2) = 4, u1(3) = 5

and
u2(0) = 2, u2(1) = 3, u2(2) = 4, u2(3) = 5.

Hence Y1 = {0, 2, 4, 5} and Y2 = {2, 3, 4, 5}. We can verify r1 ≥ r2:

r1(0) = 0, r2(0) = 0, r1(1) =
1
2
, r2(1) = 0.

Moreover, by choosing a random variable X which assumes the values 1 and
3 with probability 1/2 each, we have E(X) = 2,

E(u1(X)) = 3.5, bE(u1(X))cY1
= 2 so that π1 = 1

and
E(u2(X)) = 4, bE(u2(X))cY2

= 4 so that π2 = 0.



10

4 Jensen’s Inequality and Proof of the Fundamental Theorem

We start this section by proving a version of Jensen’s inequality.

Theorem 3 Let Y1 and Y2 be time scales and Z a random variable assuming
values in Y1. If f : Y1 → Y2 satisfies f∆ ≥ 0 and f∆∆ ≥ 0, then

bE(f(Z))cY2
≥ f(bE(Z)cY1

).

Proof We first prove that the auxiliary function f̄ defined in Appendix A
satisfies the inequality ⌊

f̄(E(Z))
⌋

Y2
≥ f̄(bE(Z)cY1

). (9)

Denote
x̄ =

⌊
f̄(E(Z))

⌋
Y2

and ȳ = bE(Z)cY1
.

Now, by definition,
ȳ = sup {y ∈ Y1 : y ≤ E(Z)}

so that ȳ ≤ E(Z) and (since Y1 is closed) ȳ ∈ Y1. Hence, by Lemma 9, we
have

f̄(ȳ) ≤ f̄(E(Z)).

Moreover, f̄(ȳ) = f(ȳ) ∈ Y2 since ȳ ∈ Y1. Altogether,

x̄ = sup
{
x ∈ Y2 : x ≤ f̄(E(Z))

}
≥ f̄(ȳ),

which confirms (9). Now, since f∆∆ ≥ 0, f̄ is convex due to Lemma 10, and
we conclude by applying the usual Jensen inequality to f̄ that

E(f̄(Z)) ≥ f̄(E(Z)) (10)

holds. Using (9) and (10), we find

bE(f(Z))cY2
=

⌊
E(f̄(Z))

⌋
Y2
≥

⌊
f̄(E(Z))

⌋
Y2
≥ f̄(bE(Z)cY1

) = f(bE(Z)cY1
),

and this completes the proof. ut

Now we present a series of lemmas that establish Theorem 2. We use the
notation as introduced in Section 3.

Lemma 1 If r1 ≥ r2, then u∆
2 /u∆

1 is increasing.

Proof Using the quotient rule on time scales (5), we find(
u∆

2

u∆
1

)∆

=
u∆∆

2 u∆
1 − u∆

2 u∆∆
1

u∆
1 u∆σ

1

=
u∆∆

2

u∆σ
1

− u∆
2 u∆∆

1

u∆
1 u∆σ

1

=
(

u∆∆
2

u∆
2

− u∆∆
1

u∆
1

)
u∆

2

u∆σ
1

= (r1 − r2)
u∆

2

u∆σ
1

≥ 0.

Hence u∆
2 /u∆

1 is increasing. ut
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Lemma 2 If u∆
2 /u∆

1 is increasing, then u1 ◦ u−1
2 is concave.

Proof Using the chain rule (6) and the derivative of the inverse (7) (note that
all required assumptions are satisfied), we find

(
u1 ◦ u−1

2

)∆2 ◦ u2 =
[(

u∆
1 ◦ u−1

2

) (
u−1

2

)∆2
]
◦ u2 = u∆

1

[(
u−1

2

)∆2 ◦ u2

]
=

u∆
1

u∆
2

,

and thus (
u1 ◦ u−1

2

)∆2 =
u∆

1

u∆
2

◦ u−1
2 is decreasing

since u−1
2 is strictly increasing. Hence u1 ◦ u−1

2 : Y2 → Y1 is concave. ut

Lemma 3 If u1 ◦ u−1
2 is concave, then π1 ≥ π2.

Proof We let f = u2 ◦ u−1
1 . Then f∆1 ≥ 0 since f is strictly increasing.

Moreover, recalling that

0 ≥
(
u1 ◦ u−1

2

)∆2∆2 =
(

u∆
1

u∆
2

◦ u−1
2

)∆2

,

we have that u∆
1 /u∆

2 is decreasing. Consequently, u∆
2 /u∆

1 is increasing, so that
f∆1 = (u∆

2 /u∆
1 ) ◦ u−1

1 is also increasing. Therefore, f∆1∆1 ≥ 0. Now let X
be a random variable with values in X and define Y = u1(X). By applying
Theorem 3, we have

π1(X)− π2(X) = E(X)− u−1
1

(
bE(u1(X))cY1

)
−

[
E(X)− u−1

2

(
bE(u2(X))cY2

)]
= u−1

2

(
bE(u2(X))cY2

)
− u−1

1

(
bE(u1(X))cY1

)
= u−1

2

(
bE(f(Y ))cY2

)
− u−1

1

(
bE(Y )cY1

)
≥ u−1

2

(
f

(
bE(Y )cY1

))
− u−1

1

(
bE(Y )cY1

)
= 0,

on noting that u−1
2 is an increasing function. ut

Lemma 4 If u∆
2 /u∆

1 is increasing, then ϕ1 ≤ ϕ2.

Proof Suppose x1, x2, x3, x4 ∈ X are such that x1 < x2 ≤ x3 < x4. Let ξ ≤ x3

and define

f(x) =
u2(x)
u∆

2 (ξ)
− u1(x)

u∆
1 (ξ)

.

Then

u2(x4)− u2(x3)
u∆

2 (ξ)
− u1(x4)− u1(x3)

u∆
1 (ξ)

= f(x4)− f(x3) ≥ f∆(ξ∗)(x4 − x3)
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for some ξ∗ ∈ X with x3 ≤ ξ∗ < x4, by the mean value theorem (8). Note

f∆(ξ∗) =
u∆

2 (ξ∗)
u∆

2 (ξ)
− u∆

1 (ξ∗)
u∆

1 (ξ)
=

[(
u∆

2

u∆
1

)
(ξ∗)−

(
u∆

2

u∆
1

)
(ξ)

]
u∆

1 (ξ∗)
u∆

2 (ξ)
≥ 0

due to the increasing nature of u∆
2 /u∆

1 and since ξ∗ ≥ x3 ≥ ξ. Hence we have
shown that

0 <
u1(x4)− u1(x3)

u∆
1 (ξ)

≤ u2(x4)− u2(x3)
u∆

2 (ξ)
whenever ξ ≤ x3 (11)

holds. Now we define

g(x) =
u1(x)

u1(x4)− u1(x3)
− u2(x)

u2(x4)− u2(x3)
.

Then

u1(x2)− u1(x1)
u1(x4)− u1(x3)

− u2(x2)− u2(x1)
u2(x4)− u2(x3)

= g(x2)− g(x1) ≥ g∆(ξ̃)(x2 − x1)

for some ξ̃ ∈ X with x1 ≤ ξ̃ < x2, by the mean value theorem (8). Note

g∆(ξ̃) =
u∆

1 (ξ̃)
u1(x4)− u1(x3)

− u∆
2 (ξ̃)

u2(x4)− u2(x3)
≥ 0

due to (11) and since ξ̃ < x2 ≤ x3. Hence we have shown

u1(x2)− u1(x1)
u1(x4)− u1(x3)

≥ u2(x2)− u2(x1)
u2(x4)− u2(x3)

,

i.e., ϕ1(x1, x2, x3, x4) ≤ ϕ2(x1, x2, x3, x4). ut

Before we study the equivalence concerning the probability premium p, let
us state some properties that can easily be verified by calculation:

1− p(x1, x2, x3) = 2
u(x3)− u(x2)
u(x3)− u(x1)

≥ 0, (12)

1 + p(x1, x2, x3) = 2
u(x2)− u(x1)
u(x3)− u(x1)

≥ 0, (13)

|p| ≤ 1, (14)
1− p(x1, x2, x3)
1 + p(x1, x2, x3)

=
u(x3)− u(x2)
u(x2)− u(x1)

≥ 0 for x1 < x2. (15)

Lemma 5 If ϕ1 ≤ ϕ2, then p1 ≥ p2.
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Proof Since x1 = x2 or x2 = x3 implies p1 = p2, let x1 < x2 < x3. By (15),
we have

1− p1(x1, x2, x3)
1 + p1(x1, x2, x3)

= ϕ1(x1, x2, x2, x3)

and
1− p2(x1, x2, x3)
1 + p2(x1, x2, x3)

= ϕ2(x1, x2, x2, x3).

Since ϕ1(x1, x2, x2, x3) ≤ ϕ2(x1, x2, x2, x3), we have

1− p1(x1, x2, x3)
1 + p1(x1, x2, x3)

≤ 1− p2(x1, x2, x3)
1 + p2(x1, x2, x3)

and hence

0 ≤ 1− p2(x1, x2, x3)
1 + p2(x1, x2, x3)

− 1− p1(x1, x2, x3)
1 + p1(x1, x2, x3)

= 2
p1(x1, x2, x3)− p2(x1, x2, x3)

(1 + p1(x1, x2, x3))(1 + p2(x1, x2, x3))
.

Hence the claim follows from (13). ut

Lemma 6 Let x̃, x̄, x̂ ∈ X with x̃ < x̄ < x̂. Define

p =
u1(x̂)− u1(x̄)
u1(x̂)− u1(x̃)

.

Then p ∈ (0, 1). Now let X be a random variable which assumes the value x̃
with probability p and the value x̂ with probability 1− p. Then

π1(X) = E(X)− x̄

and there exist τ ∈ [x̃, x̄) ∩ X and ξ ∈ [x̄, x̂) ∩ X such that

u2(x̄)− E(u2(X)) ≥ p (u1(x̄)− u1(x̃))
(

u∆
2

u∆
1

(τ)− u∆
2

u∆
1

(ξ)
)

.

Proof Since u1 is strictly increasing, we have 0 < p < 1. Moreover,

E(u1(X)) = pu1(x̃) + (1− p)u1(x̂) = u1(x̂)− p (u1(x̂)− u1(x̃)) = u1(x̄)

so that π1(X) = E(X)− x̄. Finally,

u2(x̄)− E(u2(X)) = u2(x̄)− pu2(x̃)− (1− p)u2(x̂)
= p (u2(x̂)− u2(x̃))− (u2(x̂)− u2(x̄))

=
(u1(x̂)− u1(x̄)) (u2(x̂)− u2(x̃))− (u1(x̂)− u1(x̃)) (u2(x̂)− u2(x̄))

u1(x̂)− u1(x̃)

=
(u1(x̂)− u1(x̄)) (u2(x̄)− u2(x̃))− (u1(x̄)− u1(x̃)) (u2(x̂)− u2(x̄))

u1(x̂)− u1(x̃)

= p (u1(x̄)− u1(x̃))
(

u2(x̄)− u2(x̃)
u1(x̄)− u1(x̃)

− u2(x̂)− u2(x̄)
u1(x̂)− u1(x̄)

)
.

Using the mean value theorem (8) completes the proof. ut
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Proof (Proof of Theorem 2) In this section we have now proved that (a) implies
(e) implies (f) implies (b) and that (e) implies (d) implies (c). The proof is
completed if we can show that (b) implies (a) and that (c) implies (a). We
first show that (b) implies (a). To this end, suppose (b) holds and assume (a)
is wrong, i.e., there exists x̃ ∈ Xκκ such that r1(x̃) < r2(x̃). As in the proof of
Lemma 1, we have(

u∆
2

u∆
1

)∆

(x̃) = (r1(x̃)− r2(x̃))
u∆

2 (x̃)
u∆

1 (σ(x̃))
< 0. (16)

Without loss of generality, we may assume x̃ 6= sup X (if sup X is left-scattered,
then x̃ 6= sup X as x̃ ∈ Xκκ; if sup X is left-dense and x̃ = sup X, then, by the
continuity of r1 and r2, (16) holds in a left neighborhood of x̃, so that x̃ can
be replaced with one of those other points in this neighborhood). Only the
following three cases are possible:

1. x̃ is right-scattered and σ(x̃) is right-scattered.
2. x̃ is right-scattered and σ(x̃) is right-dense.
3. x̃ is right-dense.

In each case, we will construct a random variable as in Lemma 6 and show
that u2(x̄)−E(u2(X)) > 0, which will yield bE(u2(X))cY2

< u2(x̄) and hence

π2(X) = E(X)− u−1
2

(
bE(u2(X))cY2

)
> E(X)− x̄ = π1(X),

contradicting (b) and concluding the proof. In Case 1, use x̄ = σ(x̃) and
x̂ = σ(x̄) so that τ = x̃ and ξ = x̄. In this case, (16) implies u∆

2 (τ)/u∆
1 (τ) >

u∆
2 (ξ)/u∆

1 (ξ). In Case 2, use x̄ = σ(x̃) so that τ = x̃. In this case, (16) implies
u∆

2 (τ)/u∆
1 (τ) > u∆

2 (x̄)/u∆
1 (x̄), and hence there exists x̂ > x̄ with x̂ ∈ X such

that u∆
2 (τ)/u∆

1 (τ) > u∆
2 (ξ)/u∆

1 (ξ) for all ξ ∈ [x̄, x̂)∩X. In Case 3, (16) implies
that there exists x̂ > x̃ with x̂ ∈ X such that u∆

2 (τ)/u∆
1 (τ) > u∆

2 (ξ)/u∆
1 (ξ) for

all τ, ξ ∈ X such that x̃ ≤ τ < ξ < x̂, and we can choose x̄ to be any point in
(x̃, x̂) ∩ X.

Now we show that (c) implies (a). To this end, suppose (c) holds and assume
(a) is wrong, i.e., there exists x̃ ∈ Xκκ, x̃ 6= sup X, such that r1(x̃) < r2(x̃),
and therefore (16) holds. Now, consider Case 1. Since the function f defined
by f(x) = (1−x)/(1+x) is strictly decreasing on (0, 1) and since (16) implies

u1(x̂)− u1(x̄)
u1(x̄)− u1(x̃)

=
µ(x̄)u∆

1 (x̄)
µ(x̃)u∆

1 (x̃)
>

µ(x̄)u∆
2 (x̄)

µ(x̃)u∆
2 (x̃)

=
u2(x̂)− u2(x̄)
u2(x̄)− u2(x̃)

,

we obtain by (15)

p1(x̃, x̄, x̂) =
1− u1(x̂)−u1(x̄)

u1(x̄)−u1(x̃)

1 + u1(x̂)−u1(x̄)
u1(x̄)−u1(x̃)

<
1− u2(x̂)−u2(x̄)

u2(x̄)−u2(x̃)

1 + u2(x̂)−u2(x̄)
u2(x̄)−u2(x̃)

= p2(x̃, x̄, x̂),

contradicting (c). Case 2 and Case 3 can be proved analogously by choosing
x̃, x̄, x̂ as in the proof of (b) implies (a). This concludes the proof. ut
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5 Applications and Examples

Now we give an application of the main result, Theorem 2. It utilizes the
equivalence in Theorem 2 (b) and shows that an agent B with a higher risk
aversion than agent A rejects all lotteries / gambles that A rejects (and maybe
more). This intuitively justifies the comparison of risk aversion of two agents
by the risk aversion coefficients of their utility functions.

Definition 2 A utility function ũ is called more risk averse than u if r̃ ≥ r.

Below, in Theorem 4, Corollary 1, and Definition 5, “always implies” means
that the statement is true for any random variable X with values in X and for
all x∗ ∈ X.

Theorem 4 u1 is more risk averse than u2 if and only if

bE(u2(X))cY1
≤ u2(x∗) always implies bE(u1(X))cY2

≤ u1(x∗). (17)

Proof First we assume r1 ≥ r2. Then π1 ≥ π2 by Theorem 2 (b). Assume
bE(u2(X))cY1

≤ u2(x∗). Then

u2(x∗) ≥ bE(u2(X))cY1
= u2(E(X)− π2).

Since u2 is increasing, this implies

x∗ ≥ E(X)− π2 ≥ E(X)− π1.

Since u1 is increasing, this implies

u1(x∗) ≥ u1(E(X)− π1) = bE(u1(X))cY2
.

Hence condition (17) is satisfied. Now, in turn, we assume that (17) is satisfied.
Let X be arbitrary and define x∗ = E(X)− π2. Then

u2(x∗) = u2(E(X)− π2) = bE(u2(X))cY1
.

By (17), we conclude

u1(x∗) ≥ bE(u1(X))cY2
= u1(E(X)− π1) = u1(x∗ + π2 − π1).

Since u1 is increasing, this implies x∗ ≥ x∗ + π2 − π1 and thus π1 ≥ π2. By
Theorem 2 (b), r1 ≥ r2 follows. ut

In order to get a corollary of Theorem 4, we introduce the notion of DARA
function.

Definition 3 A utility function u is called decreasingly risk averse (henceforth
DARA) if its risk aversion r is decreasing.

Corollary 1 Assume x− y ∈ X whenever x, y ∈ X. Then u is DARA if and
only if for all K ∈ X ∩ (0,∞),

bE(u(X))cY ≤ u(x∗) always implies bE(u(X −K))cY ≤ u(x∗ −K).
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Examples of time scales satisfying the condition in Corollary 1 are X = R,
X = Z, X = hZ with h > 0.

The next result will be needed in Section 6.

Theorem 5 If u is DARA, then −u∆ is more risk averse than u.

Proof For r = −u∆∆/u∆ we use the quotient rule (5) to find

r∆ =
(
−u∆∆

u∆

)∆

= −u∆∆∆u∆ − u∆∆u∆∆

u∆u∆σ
=

(u∆∆)2 − u∆u∆∆∆

u∆u∆σ
. (18)

If u is DARA, then r∆ ≤ 0 and hence (recall r ≥ 0 and u∆ > 0)

(u∆∆)2 ≤ u∆∆∆u∆ so that − (−u∆)∆∆

(−u∆)∆
≥ −u∆∆

u∆
,

and hence the risk aversion of −u∆ is greater than or equal to the risk aversion
of u. ut

Now we give some examples of utility functions. We first derive a relation
between a utility function and its risk aversion in terms of the exponential
function on time scales.

Theorem 6 Given a utility function u, the function −r is positively regres-
sive, i.e.,

1− µ(x)r(x) > 0 for all x ∈ Xκκ.

Proof Using the simple useful formula (2), the calculation

1− µr = 1 + µ
u∆∆

u∆
=

u∆ + µu∆∆

u∆
=

u∆σ

u∆
> 0

shows that −r is positively regressive. ut

By Theorem 6, if X is an isolated time scale (i.e., the graininess is always
positive), we get

r(x) ∈
[
0,

1
µ(x)

)
for all x ∈ Xκκ.

Note that the continuous case X = R (where µ ≡ 0) may be seen as a limit
case by putting 1/0+ = +∞.

Theorem 7 We have

e−r(x, x0) =
u∆(x)
u∆(x0)

for all x ∈ Xκ (19)

and
u(x) = u∆(x0)

∫ x

x0

e−r(ξ, x0)∆ξ + u(x0) for all x ∈ X. (20)
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Proof Define f = u∆/u∆(x0). Then f(x0) = u∆(x0)/u∆(x0) = 1 and

f∆ =
u∆∆

u∆(x0)
=

u∆∆

u∆

u∆

u∆(x0)
= −rf.

Since −r is positively regressive by Theorem 6, it is also regressive and hence
the exponential function e−r(·, x0) is well defined and (19) follows from the
properties of the exponential function on time scales. By integrating (19) be-
tween x0 and x, we obtain (20). ut

Definition 4 For two utility functions u1 and u2 defined on the same set X
we write u1 ∼ u2 and say that u1 is equivalent to u2 if there exist a, b ∈ R
with a > 0 such that

u1(x) = au2(x) + b for all x ∈ X.

The next two results follow immediately from Theorem 7.

Theorem 8 Two utility functions are equivalent iff they have the same risk
aversion.

Theorem 9 Exactly the following utility functions have constant risk aver-
sion:

(a) u(x) ∼ x,
(b) u(x) ∼ −e−c(x, x0) with c > 0 such that −c ∈ R+.

We conclude this section with two examples, where we assume that X is a
time scale with sup X = ∞.

Example 2 Unlike the logarithmic utility which is DARA for any time scale (as
is easily verified), the property of being DARA of the following utility function
depends on the involved time scale. Let x0 ∈ X with x0 > 0 and define

u(x) =
∫ x

x0

∆ξ

ξ2
for x > 0.

Then

u∆(x) =
1
x2

> 0 and u∆∆(x) = − x + σ(x)
x2(σ(x))2

< 0 for x > 0

so that

r(x) =
x + σ(x)
(σ(x))2

for x > 0.

Note that r is decreasing for some time scales (e.g., r(x) = 2/x for X = [1,∞),
r(x) = (2x+1)/(x+1)2 for X = N0, r(x) = (q+1)/(q2x) for X = qN0), but for
some time scales, r is not decreasing. As an example, let x0 > 0 and a, b > 0
and consider X = {xn : n ∈ N0} with

xn+1 =

{
xn + a if n is even
xn + b if n is odd,

n ∈ N0.
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Hence

r(σ(xn))− r(xn) = r(xn+1)− r(xn) =
xn+1 + xn+2

x2
n+2

− xn + xn+1

x2
n+1

.

Put x = xn. If n is even, then xn+1 = x + a and xn+2 = xn+1 + b = x + a + b
so that

r(σ(x))− r(x) =
2x + 2a + b

(x + a + b)2
− 2x + a

(x + a)2

=
(a− 3b)x2 + (2a2 − 4ab− 2b2)x + a3 − ab2 − a2b

(x + a)2(x + a + b)2
,

which is eventually (x →∞) positive if e.g., a = 4 and b = 1. If n is odd, then
xn+1 = x + b and xn+2 = xn+1 + a = x + a + b so that

r(σ(x))− r(x) =
2x + 2b + a

(x + a + b)2
− 2x + b

(x + b)2

=
(b− 3a)x2 + (2b2 − 4ab− 2a2)x + b3 − ab2 − a2b

(x + b)2(x + a + b)2
,

which is eventually (x →∞) negative if a = 4 and b = 1.

Example 3 This example shows that the risk aversion of the cubic utility, which
in the classical case is increasing, may be not increasing and/or not decreasing
(according to the choice of the time scale). Let x0 ∈ X and define

u(x) =
∫ x

x0

ξ2∆ξ for σ(x) < 0.

Then

u∆(x) = x2 > 0 and u∆∆(x) = x + σ(x) < 0 for σ(x) < 0

so that

r(x) = −x + σ(x)
x2

for σ(x) < 0.

Note that r is increasing for some time scales (e.g., r(x) = −2/x for X =
(−∞,−1], r(x) = −2/x − 1/x2 for X = −N \ {−1}, r(x) = −q(q + 1)/x for
X = −qN0), but for some time scales, r is not increasing. As an example, let
x0 < 0 and a, b > 0 and consider X = {xn : n ∈ N0} with

xn+1 =

{
xn − a if n is even
xn − b if n is odd,

n ∈ N0.

As in Example 2 we can show that r alternately increases and decreases even-
tually (x → −∞) provided e.g., a = 1 and b = 4.
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6 Risk Vulnerability

In this section we introduce risk vulnerability and characterize it. The following
definition can be interpreted in that any unfair background risk makes risk-
averse agents behave in a more risk-averse way. In this section we assume that
X is a random variable with values in Xκκ and that x∗ ∈ Xκκκ := (Xκκ)κ.

Definition 5 The utility function u is called risk vulnerable if

E(X) ≤ x∗ always implies − E(u∆∆(X))
E(u∆(X))

≥ −u∆∆(x∗)
u∆(x∗)

.

We illustrate Definition 5 with the following example.

Example 4 Let X = {0, 1, 2, 3, 4, 5} and define u : X → R by

u(0) = 0, u(1) = 2, u(2) = 4, u(3) = 5, u(4) = 6, u(5) = 7.

Then
r(0) = 0, r(1) =

1
2
, r(2) = 0, r(3) = 0.

Now let x∗ = 1 and X be a random variable taking the values 0 and 2 with
probability 1/2 each. Then

E(X) = 1 = x∗ but − E(u∆∆(X))
E(u∆(X))

= 0 <
1
2

= r(1) = −u∆∆(x∗)
u∆(x∗)

.

Thus u is not risk vulnerable.

It is then interesting to supply some conditions assuring risk vulnerabil-
ity. To this end, the main result is the following extension of [Gollier and
Pratt(1996), Proposition 3].

Theorem 10 If the utility function u satisfies

r∆ ≤ 0 and
[
(1− µr)r∆

]∆ ≥ rr∆, (21)

then it is risk vulnerable.

In order to prove this theorem, we first present the following technical
lemma.

Lemma 7 We have

1− µr =
u∆σ

u∆
, (22)

r∆ = − 1
u∆σ

[
u∆∆∆ − (u∆∆)2

u∆

]
, (23)[

u∆∆∆ − (u∆∆)2

u∆

]∆

= −u∆σ
{[

(1− µr)r∆
]∆ − rr∆

}
, (24)

u∆∆∆ − (u∆∆)2

u∆
is decreasing iff

[
(1− µr)r∆

]∆ ≥ rr∆. (25)
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Proof Using the simple useful formula (2), the calculation

1− µr = 1 + µ
u∆∆

u∆
=

u∆ + µu∆∆

u∆
=

u∆σ

u∆

shows that (22) holds. Next, rewriting (18) establishes (23). To prove (24), we
first use (23) and then (22) to write

u∆∆∆ − (u∆∆)2

u∆
= −u∆σr∆ = −u∆(1− µr)r∆.

Differentiating the above equation and using the product rule (4), we find[
u∆∆∆ − (u∆∆)2

u∆

]∆

= −
[
u∆(1− µr)r∆

]∆

= −
{

u∆σ
[
(1− µr)r∆

]∆
+ u∆∆(1− µr)r∆

}
= −

{
u∆σ

[
(1− µr)r∆

]∆ − ru∆(1− µr)r∆
}

= −
{

u∆σ
[
(1− µr)r∆

]∆ − ru∆σr∆
}

= −u∆σ
{[

(1− µr)r∆
]∆ − rr∆

}
,

where we have used again (22). Finally, (25) follows directly from (24). ut

Proof (Proof of Theorem 10) By the assumption and (25),

u∆∆∆ − (u∆∆)2

u∆
is decreasing.

Note also that we may assume u∆∆(x∗) 6= 0. Then

1
u∆∆(x∗)

[{
u∆∆∆(x)− (u∆∆(x))2

u∆(x)

}
−

{
u∆∆∆(x∗)− (u∆∆(x∗))2

u∆(x∗)

}]
+

u∆∆(x)
u∆∆(x∗)

[
u∆∆(x)
u∆(x)

− u∆∆(x∗)
u∆(x∗)

]
=

u∆∆∆(x)
u∆∆(x∗)

− u∆∆(x)
u∆(x∗)

−
[
u∆∆∆(x∗)
u∆∆(x∗)

− u∆∆(x∗)
u∆(x∗)

]
,

and hence, recalling that r∆ ≤ 0, the last expression is nonnegative if x ≥ x∗

and nonpositive if x ≤ x∗, so that we can conclude

0 ≤
∫ x

x∗

{
u∆∆∆(ξ)
u∆∆(x∗)

− u∆∆(ξ)
u∆(x∗)

−
[
u∆∆∆(x∗)
u∆∆(x∗)

− u∆∆(x∗)
u∆(x∗)

]}
∆ξ

=
u∆∆(ξ)
u∆∆(x∗)

− u∆(ξ)
u∆(x∗)

− ξ

[
u∆∆∆(x∗)
u∆∆(x∗)

− u∆∆(x∗)
u∆(x∗)

]∣∣∣∣ξ=x

ξ=x∗

=
u∆∆(x)
u∆∆(x∗)

− u∆(x)
u∆(x∗)

− (x− x∗)
[
u∆∆∆(x∗)
u∆∆(x∗)

− u∆∆(x∗)
u∆(x∗)

]
.
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Thus
u∆∆(x)
u∆∆(x∗)

− u∆(x)
u∆(x∗)

≥ (x− x∗)
[
u∆∆∆(x∗)
u∆∆(x∗)

− u∆∆(x∗)
u∆(x∗)

]
holds for arbitrary x ∈ Xκκ. Therefore, if X is a random variable with values
in Xκκ, we deduce

E(u∆∆(X))
u∆∆(x∗)

− E(u∆(X))
u∆(x∗)

≥ (E(X)− x∗)
[
u∆∆∆(x∗)
u∆∆(x∗)

− u∆∆(x∗)
u∆(x∗)

]
. (26)

By Theorem 5, the second factor on the right-hand side of (26) is nonpositive.
The assumption E(X) ≤ x∗ implies that the expression on the left-hand side
of (26) is nonnegative. Hence

−E(u∆∆(X))
E(u∆(X))

≥ −u∆∆(x∗)
u∆(x∗)

.

This means that u is risk vulnerable. ut

Next, we will analyze when condition (21) holds. To do so, we first introduce
the following two coefficients.

Definition 6 We define the coefficients p of absolute prudence and t of abso-
lute temperance for a utility function u by

p = −u∆∆∆

u∆∆
and t = −u∆∆∆∆

u∆∆∆
.

Some relations of p, t, and r are given next.

Lemma 8 We have

p = rσ − r∆

r
= r − (1− µr)r∆

r
, (27)

t =
1− µr

pr

{[
(1− µr)r∆

]∆ − rr∆
}

+ r + rσ − rrσ

p
, (28)

1− µr

pr

[
(1− µr)r∆

]∆
= t−

[
2r + rσ − r(r + rσ)

p

]
, (29)[

(1− µr)r∆
]∆ − (r + rσ)r∆ =

pr

1− µr
(t− r). (30)

Proof We use the quotient rule (5) and (22) from Lemma 7:

r − p = −u∆∆

u∆
+

u∆∆∆

u∆∆
=

u∆∆∆u∆ − (u∆∆)2

u∆u∆σ

u∆σ

u∆∆

=
(

u∆∆

u∆

)∆
u∆(1− µr)

u∆∆
=

r∆(1− µr)
r

.

Moreover, using (2),

rσ − r∆

r
= r + µr∆ − r∆

r
= r − (1− µr)r∆

r
.
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This proves (27). To show (28), we use the quotient rule (5) and (24) from
Lemma 7:[

(1− µr)r∆
]∆ − rr∆ = − 1

u∆σ

[
u∆∆∆ − (u∆∆)2

u∆

]∆

= − 1
u∆σ

[
u∆∆∆∆ − u∆∆∆(u∆∆ + u∆∆σ)u∆ − (u∆∆)3

u∆u∆σ

]
=

u∆∆∆

u∆σ

[
−u∆∆∆∆

u∆∆∆
+

u∆∆ + u∆∆σ

u∆σ
− (u∆∆)3

u∆u∆σu∆∆∆

]

=
u∆∆∆

u∆∆

u∆∆

u∆

u∆

u∆σ

t +
u∆∆

u∆

u∆

u∆σ
− rσ −

(
u∆∆

u∆

)2
u∆

u∆σ

u∆∆∆

u∆∆


=

pr

1− µr

[
t− r

1− µr
− rσ +

r2

(1− µr)p

]
,

where we have used in the last step three times (22). This together with

1
1− µr

− r

(1− µr)p
= 1− rσ

p
(31)

proves (28). It remains to show (31). By the second and first part of (27), we
have

1
1− µr

− r

(1− µr)p
=

p− r

(1− µr)p
=

− (1−µr)r∆

r

(1− µr)p

= −r∆

rp
=

p− rσ

p
= 1− rσ

p
.

This establishes (31), and hence (28). Next, by (27) and (28), we have

1− µr

pr

[
(1− µr)r∆

]∆
= t−

[
r + rσ − rrσ

p

]
+

(1− µr)r∆

p

= t−
[
r + rσ − rrσ

p

]
− (p− r)r

p

= t−
[
2r + rσ − r(r + rσ)

p

]
.

This establishes (29). Finally, by (28) and the second part of (27), we have[
(1− µr)r∆

]∆ − rr∆ − rσr∆ =
pr

1− µr

[
t− r − rσ +

rrσ

p

]
− rσr∆

=
pr

1− µr
(t− r)− prrσ

1− µr
+

r2rσ

1− µr
− rσ

[
r(r − p)
1− µr

]
=

pr

1− µr
(t− r).

This establishes (30). ut
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The following three theorems are direct consequences of Lemma 8 and
Theorem 6.

Theorem 11 A utility function is DARA iff its coefficient of absolute pru-
dence exceeds its risk aversion.

Proof Since
r∆ ≤ 0 iff p ≥ r

holds by (27), the statement follows. ut

Theorem 12 A utility function is risk vulnerable if it is DARA and

t ≥ r + rσ − rrσ

p

or

t ≥ 2r + rσ − r(r + rσ)
p

holds.

Proof Since r∆ ≤ 0, by (28), we have[
(1− µr)r∆

]∆ ≥ rr∆ iff t ≥ r + rσ − rrσ

p
,

so that the first statement follows from Theorem 10. Next, since r∆ ≤ 0, by
Theorem 11 and (29), we have[

(1− µr)r∆
]∆ ≥ 0 iff t ≥ 2r + rσ − r(r + rσ)

p
,

so that, on noting that rr∆ ≤ 0, the second statement follows from Theorem
10, too. ut

Theorem 13 A utility function is DARA and satisfies[
(1− µr)r∆

]∆ ≥ (r + rσ)r∆

iff its coefficients of absolute prudence and temperance both exceed its risk
aversion.

Proof Since

r∆ ≤ 0,
[
(1− µr)r∆

]∆ ≥ (r + rσ)r∆ iff p ≥ r, t ≥ r

holds by Theorem 11 and (30), the proof is complete. ut

Remark 1 In order to obtain the results in [Gollier and Pratt(1996)] from the
statements given in this section, one has to take X = R. Indeed, the conditions
considered in Theorems 10, 12, and 13 become the same as in [Gollier and
Pratt(1996), Proposition 3, Corollary 1, and Formula (13)].
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A An Auxiliary Function

For a given function f : X → R, we define an auxiliary function f̄ : [inf X, sup X] → R (with
the corresponding endpoints excluded if inf X = −∞ or sup X = ∞) by

f̄(t) = f(bxc) + (t− bxc)f∆(bxc) for bxc ≤ t ≤ σ(bxc) if bxc := bxcX ∈ Xκ

and f̄(x) = f(x) if x ∈ X \ Xκ.

Lemma 9 Suppose f : X → R satisfies f∆ ≥ 0 on Xκ. Then f̄ is increasing.

Proof Let inf X ≤ x < y ≤ sup X (with the corresponding endpoints excluded if inf X = −∞
or sup X = ∞). Then by (1) and (2), if byc ∈ Xκ,

f̄(y)− f̄(x) = f(byc) + (y − byc)f∆(byc)− f(bxc)− (x− bxc)f∆(bxc)

=

∫ byc

bxc
f∆(t)∆t + (y − byc)f∆(byc)− (x− bxc)f∆(bxc)

=

∫ byc

σ(bxc)
f∆(t)∆t + µ(bxc)f∆(bxc) + (y − byc)f∆(byc)− (x− bxc)f∆(bxc)

=

∫ byc

σ(bxc)
f∆(t)∆t + (σ(bxc)− x) f∆(bxc) + (y − byc)f∆(byc)

≥ 0

since f∆ ≥ 0, and, similarly, if y ∈ X \ Xκ,

f̄(y)−f̄(x) = f(y)−f(bxc)−(x−bxc)f∆(bxc) =

∫ y

σ(bxc)
f∆(t)∆t+(σ(bxc)−x)f∆(bxc) ≥ 0.

Thus f̄ is increasing. ut

Lemma 10 Suppose f : X → R satisfies f∆∆ ≥ 0 on Xκκ. Then f̄ is convex.

Proof Let x, y ∈ Xκ with x < y. Then

f∆(y)− f∆(x) =

∫ y

x
f∆∆(t)∆t ≥ 0

so that f∆ : Xκ → R is increasing. Now note that for any x such that bxc ∈ Xκ we have

(x− bxc)f∆(bxc) = f̄(x)− f(bxc),

and, using the simple useful formula (2),

(σ(bxc)− x)f∆(bxc) = (σ(bxc)− bxc+ bxc − x)f∆(bxc)
= µ(bxc)f∆(bxc) + (bxc − x)f∆(bxc)
= f(σ(bxc))− f(bxc) + (bxc − x)f∆(bxc)
= f(σ(bxc))− f̄(x).

We let inf X ≤ x < y ≤ sup X (with the corresponding endpoints excluded if inf X = −∞
or sup X = ∞), 0 < λ < 1, and define z = λx + (1 − λ)y. Then we use the properties of
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the integral (1) to find, if byc ∈ Xκ (and, as before in the proof of Lemma 9, similarly, if
y ∈ X \ Xκ)

λf̄(x) + (1− λ)f̄(y)− f̄(z) = −λ(f̄(z)− f̄(x)) + (1− λ)(f̄(y)− f̄(z))

= −λ

(
f̄(z)− f(bzc) + f(σ(bxc))− f̄(x) +

∫ bzc

σ(bxc)
f∆(t)∆t

)

+(1− λ)

(
f̄(y)− f(byc) + f(bzc)− f̄(z) +

∫ byc

bzc
f∆(t)∆t

)

= −λ

(
(z − bzc)f∆(bzc) + (σ(bxc)− x)f∆(bxc) +

∫ bzc

σ(bxc)
f∆(t)∆t

)

+(1− λ)

(
(y − byc)f∆(byc)− (z − bzc)f∆(bzc) +

∫ byc

bzc
f∆(t)∆t

)
= −(z − bzc)f∆(bzc)− λ(σ(bxc)− x)f∆(bxc) + (1− λ)(y − byc)f∆(byc)

+(1− λ)

∫ byc

bzc
f∆(t)∆t− λ

∫ bzc

σ(bxc)
f∆(t)∆t

≥ −(z − bzc)f∆(bzc)− λ(σ(bxc)− x)f∆(bxc) + (1− λ)(y − byc)f∆(byc)
+(1− λ)(byc − bzc)f∆(bzc)− λ(bzc − σ(bxc))f∆(bzc)

= (1− λ)(y − byc)
[
f∆(byc)− f∆(bzc)

]
+ λ(σ(bxc)− x)

[
f∆(bzc)− f∆(bxc)

]
≥ 0

since x ≤ z ≤ y and f∆ is increasing. Thus f̄ is convex. ut
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[Bohner and Ünal(2005)] Bohner M, Ünal M (2005) Kneser’s theorem in q-calculus. J Phys
A: Math Gen 38(30):6729–6739

[Bohner and Warth(2007)] Bohner M, Warth H (2007) The Beverton–Holt dynamic equa-
tion. Applicable Anal 86(8):1007–1015

[Bohner et al(2007)Bohner, Fan, and Zhang] Bohner M, Fan M, Zhang J (2007) Periodicity
of scalar dynamic equations on time scales and applications to population models. J
Math Anal Appl 330(1):1–9

[Diamond and Gelles(1995)] Diamond H, Gelles GM (1995) On an asymptotic property of
expected utility. Econom Lett 47(3-4):305–309

[Diamond and Gelles(1999)] Diamond H, Gelles GM (1999) Gaussian approximation of ex-
pected utility. Econom Lett 64(3):301–307

[Gelles and Mitchell(1999)] Gelles GM, Mitchell DW (1999) Broadly decreasing risk aver-
sion. Management Sci 45(10):1432–1439

[Gollier(2001)] Gollier C (2001) The Economics of Risk and Time. The MIT Press, Cam-
bridge, Massachusetts

[Gollier and Pratt(1996)] Gollier C, Pratt JW (1996) Risk vulnerability and the tempering
effect of background risk. Econometrica 64(5):1109–1123

[Hilger(1988)] Hilger S (1988) Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannig-
faltigkeiten. PhD thesis, Universität Würzburg

[Hilger(1990)] Hilger S (1990) Analysis on measure chains — a unified approach to contin-
uous and discrete calculus. Results Math 18:18–56

[Kihlstrom et al(1981)Kihlstrom, Romer, and Williams] Kihlstrom RE, Romer D, Williams
S (1981) Risk aversion with random initial wealth. Econometrica 49(4):911–920

[Kimball(1990)] Kimball MS (1990) Precautionary saving in the small and in the large.
Econometrica 58(1):53–73

[Kimball(1993)] Kimball MS (1993) Standard risk aversion. Econometrica 61(3):589–611
[Kloeden and Zmorzynska(2006)] Kloeden PE, Zmorzynska A (2006) Lyapunov functions

for linear nonautonomous dynamical equations on time scales. Adv Difference Equ pp
Art. ID 69,106, 10

[Machina(1987)] Machina MJ (1987) Decision making in the presence of risk. Science
236(4801):537–543

[Machina and Neilson(1987)] Machina MJ, Neilson WS (1987) The Ross characterization
of risk aversion: Strengthening and extension. Econometrica 55(5):1139–1149

[Maggi et al(2006)Maggi, Magnani, and Menegatti] Maggi MA, Magnani U, Menegatti M
(2006) On the relationship between absolute prudence and absolute risk aversion. Decis
Econ Finance 29(2):155–160

[Pratt(1964)] Pratt JW (1964) Risk aversion in the small and in the large. Econometrica
32(1-2):122–136

[Pratt and Zeckhauser(1987)] Pratt JW, Zeckhauser RJ (1987) Proper risk aversion. Econo-
metrica 55(1):143–154

[Sheng(2005)] Sheng Q (2005) A view of dynamic derivatives on time scales from approxi-
mations. J Difference Equ Appl 11(1):63–81

[Tisdell and Zaidi(2008)] Tisdell CC, Zaidi A (2008) Basic qualitative and quantitative re-
sults for solutions to nonlinear dynamic equations on time scales with an application to
economic modelling. Nonlinear Anal 68(11):3504–3524


