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ABSTRACT. In the spotlight of this study is a particular type of first order dynamic initial value
problem of the form

u∆ = f(t, u) + g(t, u), u(t0) = u0,

where f, g ∈ Crd [Tκ × R,R] are nondecreasing and nonincreasing in u, respectively. A quasilin-
earization technique utilizing the nature of natural lower and upper solutions as well as coupled
lower and upper solutions is developed for this problem. Beginning with the existence of coupled
lower and upper solutions, the goal is to create two sequences of solutions, one that converges to a
minimal solution and one that converges to a maximal solution.
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1. INTRODUCTION

The method of upper and lower solutions has been effectively used for proving

the existence results for a wide variety of nonlinear problems. When coupled with

the monotone iterative technique one obtains a constructive procedure for obtaining

the solutions of the nonlinear problems besides enabling the study of the qualitative

properties of the solutions. A very comprehensive introduction to the monotone

iterative techniques is given in [11].

This method has further been exploited in combination with the method of quasi-

linearization, to obtain concurrently the lower and upper bounding monotone se-

quences, whose elements are solutions of linear problems, and hence are easier to

obtain, which converge quadratically to the solution. This technique, known as the

generalized quasilinearization has also been effectively used to study nonlinear prob-

lems and developed further in [13].

In the context of “time scales”, in [8] Kaymakçalan had an initial attempt to

developing the method of lower and upper solutions for obtaining extremal solutions

of dynamic initial value problems. Further in [9] several other contributions in the
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direction of monotone methods and quasilinerization on time scales have been in-

cluded, and finally in [7] Eloe has developed the method of quasilinearization for

dynamic equations on compact measure chains, pioneering to several other contribu-

tions ([1, 2, 4]) in the area.

In the recent work of Akın-Bohner and Bohner [3] and in [6, Chapter 2], one of

the forms of the generalized logistic dynamic equation (or Verhulst equation) appears

as

(1.1) x∆ = (p− fxσ)x,

where p ∈ R and f ∈ Crd, with R denoting the regressive group as given in [5]. For

further details of the notions related to the time scales calculus we refer to [5, 6]. Now

although in the case of the above specific nonlinear equation, (1.1), Akın-Bohner and

Bohner illustrate how a solution v of the corresponding linear equation

(1.2) v∆ = −p(t)vσ + f(t)

can be utilized to give a closed form solution of the nonlinear equation (1.1), (see

[6, Theorem 2.24]), one may not always be so lucky. So the main subject of this

paper, namely using quasilinearization technique to construct sequences converging

first to extremal solutions and then further to the unique solution of the nonlinear

IVP proves to be especially useful in such cases when corresponding linear equations

and their solutions are not easily available.

The above considered logistic equation model (1.1) motivates one to consider

initial value problems where the right-hand side consists of the difference of two

functions f(t, u) and g(t, u) which are monotone in u. Also attention is focused on

coupled lower and upper solutions instead of the usual separate lower and upper

solutions. Our main aim in this work is to construct monotone, bounded sequences

which converge uniformly to the minimal and maximal solutions of the problem, and

it will be a subject of a future project to extend the results obtained in this work

to the case of developing the convergence of the constructed monotone sequences

to the unique solution of the problem. In the case when a closed form solution

of the original nonlinear problem is known, such as in Theorem 2.24 of [6], exact

description of the form of the sequences of lower and upper solutions obtained with

the quasilinearization technique will be formulated, so as to coincide with the known

solution in the limiting case.

2. PRELIMINARY CONCEPTS AND RESULTS

Our goal is to gain insight about lower and upper solutions of the dynamic IVP

(2.1) u∆ = f(t, u) + g(t, u)
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(2.2) u(t0) = u0

in the particular case when f, g ∈ Crd [Tκ × R,R] are respectively nondecreasing and

nonincreasing in u on a time scale Tκ. Let us begin with the usual definition of upper

and lower solutions.

Definition 2.1. A function α ∈ Crd [Tκ,R] is said to be a lower solution of

(2.3) u∆ = h(t, u)

if

α∆ ≤ h(t, α)

and, similarly, β is said to be an upper solution of (2.3) if

β∆ ≥ h(t, β).

The concept of lower and upper solutions can be generalized to include coupled

lower and upper solutions. Utilizing these generalized notions given by Lakshmikan-

tham and Köksal in [12], and further employed by Lawrence and Kaymakçalan for

dynamic initial value problems on time scales in [10], we define natural lower and

upper solutions as well as the three types of coupled lower and upper solutions for

our problem.

Definition 2.2. Let α and β be rd-continuously differentiable functions such that

ασ(t) ≤ β(t) on Tκ. Then α and β are

i) Natural lower and upper solutions of (2.1)–(2.2) if

α∆ ≤ f (t, ασ) + g (t, ασ) , α (t0) ≤ u0,

β∆ ≥ f (t, βσ) + g (t, βσ) , β (t0) ≥ u0;

ii) Coupled lower and upper solutions of Type I of (2.1)–(2.2) if

α∆ ≤ f (t, ασ) + g (t, βσ) , α (t0) ≤ u0,

β∆ ≥ f (t, βσ) + g (t, ασ) , β (t0) ≥ u0;

iii) Coupled lower and upper solutions of Type II of (2.1)–(2.2) if

α∆ ≤ f (t, βσ) + g (t, ασ) , α (t0) ≤ u0,

β∆ ≥ f (t, ασ) + g (t, βσ) , β (t0) ≥ u0;

iv) Coupled lower and upper solutions of Type III of (2.1)–(2.2) if

α∆ ≤ f (t, βσ) + g (t, βσ) , α (t0) ≤ u0,

β∆ ≥ f (t, ασ) + g (t, ασ) , β (t0) ≥ u0.
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Vast amount of qualitative and quantitative results for various types of differential

equations involving the above four cases have been developed (see [12]). In fact, the

nature of the functions f and g reduce the number of distinct cases to two. Namely,

natural lower and upper solutions satisfy the inequalities that define Type II coupled

lower and upper solutions, that is,

α∆ ≤ f (t, ασ) + g (t, ασ) ≤ f (t, βσ) + g (t, ασ) ,

β∆ ≥ f (t, βσ) + g (t, βσ) ≥ f (t, ασ) + g (t, βσ) .

In a similar manner, Type III coupled lower and upper solutions also satisfy the

inequalities that define Type II coupled lower and upper solutions. This observation

is verified by the following inequalites:

α∆ ≤ f (t, βσ) + g (t, βσ) ≤ f (t, βσ) + g (t, ασ) ,

β∆ ≥ f (t, ασ) + g (t, ασ) ≥ f (t, ασ) + g (t, βσ) .

Therefore it will be enough to show that our results hold merely for Type I and Type

II lower and upper coupled solutions. Each of these interesting cases will be addressed

in the work that follows.

The construction of our sequences of lower and upper solutions which will then

be shown to converge to the unique solution of the IVP (2.1)–(2.2), requires certain

natural relationships between lower and upper solutions as well as the solutions of

(2.1)–(2.2) to hold. These relationships have been verified by Kaymakçalan [8] in the

case of the right hand side function of (2.1) being a general rd-continuos function,

without necessarily having to split into a sum of nondecreasing and nonincresaing

functions, and therefore similar results in the context of our problem are presented

below without proof.

Theorem 2.3. Let α and β be either Type I or Type II coupled lower and upper

solutions of (2.1)–(2.2), respectively. Assume f(t, x) satisfies

(2.4) f(t, x)− f(t, y) ≤ L(x− y) for x ≥ y

and g(t, x) is nonincreasing in x. Then α(t0) ≤ β(t0) implies that α(t) ≤ β(t) for

t ∈ Tκ.

Under these assumptions, any solution of (2.1)–(2.2) is squeezed between lower

and upper solutions (2.1)–(2.2) where lower-upper solutions are given in terms of

Definition 2.1. This result is formally stated next.

Theorem 2.4. Assume the conditions on f and g of Theorem 2.3 are satisfied. Then

any solution u(t) of (2.1)–(2.2), satisfying

α(t0) ≤ u(t0) ≤ β(t0),
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with α and β respectively being lower and upper solutions of (2.1)–(2.2), also satisfies

α(t) ≤ u(t) ≤ β(t),

for t ∈ Tκ.

Under the assumption that lower and upper solutions exist, we can verify the

existence of a solution of (2.1)–(2.2) that is bounded above by the upper solution

and below by the lower solution, for each t ∈ Tκ. Kaymakçalan also established this

result [8, Theorem1.3], again for a general problem of the form

u∆ = f(t, u), u(t0) = u0

when f ∈ Crd [Tκ × R,R], and below we state the equivalent result in the context of

our problem.

Theorem 2.5. Let α, β ∈ Crd [Tκ,R] be either Type I or Type II lower and upper

solutions of (2.1)–(2.2), respectively, such that α(t) ≤ β(t) for t ∈ Tκ, and f, g ∈
Crd [Ω,R] be bounded on Ω, where Ω is the closed set determined by α(t) and β(t),

namely

Ω = {(t, u) : α(t) ≤ u ≤ β(t), t ∈ Tκ} .

Then there exists a solution, u(t), of (2.1)–(2.2) such that α(t) ≤ u(t) ≤ β(t) on Tκ

whenever α(t0) ≤ u(t0) ≤ β(t0).

3. THE MAIN RESULTS

The existence of two convergent sequences of solutions that converge one to a

maximal one to a minimal solution of (2.1)–(2.2) is now established by way of con-

struction. First we consider lower and upper coupled solutions of Type I.

Theorem 3.1. Let f and g be functions with properties described in Theorem 2.5.

In addition, assume that

i) fx, fxx, gx, gxx are continuous functions on Tκ × R;

ii) fxx ≥ 0 and gxx ≤ 0 for (t, x) ∈ Tk × R.

Let α0 and β0 denote Type I coupled lower and upper solutions of (2.1)–(2.2) respec-

tively. Then there exist sequences {αn}, {βn} that converge in the space of continuous

functions to minimal and maximal solutions, respectively, of (2.1)–(2.2).

Proof. The additional assumptions made on f and g yield the inequalities

f (t, x)− f (t, y)

x− y
≥ fx (t, y) and

g (t, x)− g (t, y)

x− y
≤ gx (t, y) .

For the construction of our sequences we need two linearization terms. First define a

function F : Tκ × R→ R by

F (t, xσ;α0, β0) = f (t, ασ0 ) + fx (t, ασ0 ) (xσ − ασ0 ) + g (t, βσ0 ) + gx (t, ασ0 ) (xσ − ασ0 ) ,
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where α0 and β0 are respectively Type I lower and upper solutions of (2.1)–(2.2).

Utilizing this function we create the linear dynamic equation

(3.1) x∆ = F (t, xσ;α0, β0)

satisfying initial condition (2.2). Using the natures of α0 and β0, and the assumptions

on f and g, we can establish th inequalities

α∆
0 ≤ f (t, ασ0 ) + g (t, βσ0 )

≤ f (t, ασ0 ) + fx (t, ασ0 ) (ασ0 − ασ0 ) + g (t, βσ0 ) + gx (t, ασ0 ) (ασ0 − ασ0 )

= F (t, ασ0 ;α0, β0)

and

β∆
0 ≥ f (t, βσ0 ) + g (t, ασ0 )

≥ f (t, ασ0 ) + fx (t, ασ0 ) (βσ0 − ασ0 ) + g (t, βσ0 )− gx (t, ασ0 ) (βσ0 − ασ0 )

≥ f (t, ασ0 ) + fx (t, ασ0 ) (βσ0 − ασ0 ) + g (t, βσ0 ) + gx (t, ασ0 ) (βσ0 − ασ0 )

= F (t, βσ0 ;α0, β0) .

Therefore, α0 and β0 are Type I lower and upper solutions of (3.1)–(2.2). In view of

the work of Kaymakçalan [8] and the above Theorem 2.4 and Theorem 2.5, we know

that there exists a solution of (3.1)–(2.2), call it α1, such that

α0 (t) ≤ α1 (t) ≤ β0 (t)

for t ∈ Tκ.

A second linearization is defined using the function G : Tκ × R → R, according

to

G (t, xσ;α0, β0) = f (t, βσ0 ) + fx (t, ασ0 ) (xσ − βσ0 ) + g (t, ασ0 ) + gx (t, βσ0 ) (xσ − βσ0 ) ,

yielding the dynamic equation

(3.2) x∆ = G (t, xσ;α0, β0) ,

satisfying initial condition (2.2). Again we can verify that α0 and β0 are respectively

Type I lower and upper solutions of (3.2)–(2.2) by working our way through the

following inequalities,

α∆
0 ≤ f (t, ασ0 ) + g (t, βσ0 )

≤ f (t, βσ0 )− fx (t, ασ0 ) (βσ0 − ασ0 ) + g (t, ασ0 ) + gx (t, ασ0 ) (βσ0 − ασ0 )

≤ f (t, βσ0 ) + fx (t, ασ0 ) (ασ0 − βσ0 ) + g (t, ασ0 ) + gx (t, ασ0 ) (ασ0 − βσ0 )

≤ f (t, βσ0 ) + fx (t, ασ0 ) (ασ0 − βσ0 ) + g (t, ασ0 ) + gx (t, βσ0 ) (ασ0 − βσ0 )

= G (t, ασ0 ;α0, β0)
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and

β∆
0 ≥ f (t, βσ0 ) + g (t, ασ0 )

≥ f (t, βσ0 ) + fx (t, ασ0 ) (βσ0 − βσ0 ) + g (t, ασ0 ) + gx (t, βσ0 ) (βσ0 − βσ0 )

= G (t, ασ0 ;α0, β0) .

Note that the previously mentioned result of Kaymakçalan [8] comparing lower and

upper solutions, presented in in the context of our problem as given by Theorem 2.3

is employed also in arriving at the above inequalities. Existence theorem, Theorem

2.5 again yields a solution of (3.2)–(2.2), name it β1, such that

α0 (t) ≤ β1 (t) ≤ β0 (t)

for t ∈ Tκ.

Taking into consideration the the assumptions on α1 and β1 and working through

the following inequalities, we arrive at the conclusion that α1 and β1 are Type I lower

and upper solutions of (2.1)–(2.2) as well. Let us verify this claim:

α∆
1 = f (t, ασ0 ) + fx (t, ασ0 ) (ασ1 − ασ0 ) + g (t, βσ0 ) + gx (t, ασ0 ) (ασ1 − ασ0 )

≤ f (t, ασ1 ) + g (t, βσ0 )

≤ f (t, ασ1 ) + g (t, βσ1 )

and

β∆
1 = f (t, βσ0 ) + fx (t, ασ0 ) (βσ1 − βσ0 ) + g (t, ασ0 ) + gx (t, βσ0 ) (βσ1 − βσ0 )

≥ f (t, βσ0 )− fx (t, ασ0 ) (βσ0 − βσ1 ) + g (t, ασ1 )

≥ f (t, βσ0 )− fx (t, βσ1 ) (βσ0 − βσ1 ) + g (t, ασ1 )

≥ f (t, βσ1 ) + g (t, ασ1 ) .

Now, Theorem 2.3 yields α1 ≤ β1 and therefore we have established the string of

inequalities

α0 ≤ α1 ≤ β1 ≤ β0.

Using the standard induction principle it can be shown that

αn ≤ αn+1 ≤ βn+1 ≤ βn,

where αn+1 satisfies

x∆ = F (t, xσ;αn, βn) ,

and βn+1 satisfies

x∆ = G (t, xσ;αn, βn) .

Through this construction, two monotone and bounded sequences, {αn}, {βn} are

formed and moreover, for each n, αn is a lower solution and respectively, βn is an

upper solution of (2.1)–(2.2).
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Since the set Ω, given in the hypotheses of Theorem 2.5, is compact, employing

standard uniform convergence arguments, the limits,

α = lim
n→∞

αn and β = lim
n→∞

βn

are obtained. Furthermore, it can be shown that α and β are minimal and maximal

solutions, respectively, of our original problem, (2.1)–(2.2) thus verifying the assertion

of the theorem.

Remarks:

1) Theorem 3.1 actually serves two purposes:

i) It establishes the existence of two sequences of solutions, one that converges to a

minimal solution of our original problem, and one that converges to a maximal

solution.

ii) It provides a constructive technique for creating these sequences.

2) As given by [10, Corollary 3.1], in the case when the right-hand side term, k(t, u) =

f(t, u) + g(t, u), of (2.1) satisfies a Lipschitz condition in u, it can be shown (see [10])

that the IVP (2.1)–(2.2) has a unique solution u(t) and moreover the sequences {αn}
and {βn} constructed in the above Theorem 3.1 converge to this unique solution,

thereby implying α(t) = u(t) = β(t).

Recall that the above result, Theorem 3.1, is only verified for Type I coupled

lower and upper solutions. Next we focus on coupled solutions of Type II, thereby,

in view of the observations following the Definition 2.2, establishing the existence of

convergent sequences to the maximal and minimal solutions of (2.1)–(2.2) not only

for Type II, but for Type III, and the usual natural upper and lower solutions as well.

Theorem 3.2. Assume the conditions on f and g required in Theorem 3.1 are sat-

isfied. Further assume the existence of α0 and β0, Type II coupled lower and upper

solutions of (2.1)–(2.2). Then there exist convergent sequences αn and βn with

α = lim
n→∞

αn and β = lim
n→∞

βn

where α is a minimal solution of (2.1)–(2.2) and β is, respectively, a maximal solu-

tion.

Proof. The proof of Theorem 3.2 follows the same format as that of Theorem 3.1.

The difference, of course, is in the definitions of the linearization terms necessary for

the quasilinearization process. In the current situation, define

F (t, xσ;α0, β0) = f (t, βσ0 ) + fx (t, βσ0 ) (ασ0 − xσ)

+g (t, ασ0 ) + gx (t, βσ0 ) (xσ − ασ0 ) ,
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and

G (t, xσ;α0, β0) = f (t, ασ0 ) + fx (t, βσ0 ) (βσ0 − xσ)

+g (t, βσ0 ) + gx (t, βσ0 ) (xσ − βσ0 ) .

Utilizing these definitions, we construct linear equations

(3.3) x∆ = F (t, xσ;α0, β0)

and

(3.4) x∆ = G (t, xσ;α0, β0)

and obtain, as before, corresponding solutions α1, of (3.3), (2.2), and β1, of (3.4),

(2.2), such that

α0 (t) ≤ α1 (t) ≤ β0 (t)

and

α0 (t) ≤ β1 (t) ≤ β0 (t) .

As in the previous case, α1 and β1 can be shown to be lower and upper solutions,

respectively, of (2.1)–(2.2) and hence employing Theorem 2.3 yields

α1 (t) ≤ β1 (t) .

Just as in the proof of Theorem 3.1, following similar induction and uniform conver-

gence arguments, two convergent sequences {αn} and {βn} whose limits are minimal

and maximal solutions, respectively, of the original problem are obtained.

Note that each of the four possible couplings of lower and upper solutions, utiliz-

ing α and β as given in Definition 2.2 is addressed in either Theorem 3.1 or Theorem

3.2, thus generalizing the results given for the usual concept of the lower and upper

solution as indicated by Definition 2.1.
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cations. Birkhäuser, Boston, 2001.
[6] M. Bohner and A. Peterson. Advances in Dynamic Equations on Time Scales. Birkhäuser,
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[8] B. Kaymakçalan. Monotone iterative method for dynamic systems on time scales. Dynam. Sys-
tems Appl., 2(2): 213–220, 1993.
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