CHAPTER 7

Heath—Jarrow—Morton Framework

7.1. Heath—Jarrow—Morton Model

DEFINITION 7.1 (Forward-rate dynamics in the HJIM model). In the Heath—-
Jarrow—Morton model, briefly HJM model, the instantaneous forward interest rate

with maturity 7T is assumed to satisfy the stochastic differential equation
df(t,T) = a(t,T)dt + o(t, T)dW (t),

where a and o are adapted and W is a Brownian motion under the risk-neutral

measure.

THEOREM 7.2 (Bond-price dynamics in the HIM model). In the HIM model,
the price of a zero-coupon bond with maturity T satisfies the stochastic differential

equation
dP(t,T) = (r(t) FAGT) + %22@, T)) P(t, T)dt + (¢, T)P(t, T)AW (2),
where
AT = — / Cltdu and ST = / " ot wdu

THEOREM 7.3 (Bond-price dynamics implying HIM model). If the price of a

zero-coupon bond with maturity T satisfies the stochastic differential equation
dP(t,T) =m(t,T)P(t,T)dt + v(t, T)P(t, T)dW (¢),

where m and v are adapted, then the forward-rate dynamics are as in the HJM

model with

at,T) =v(t, T)or(t,T) —mrt,T) and ot,T)=—vp(t,T).

43



44 7. HEATH-JARROW-MORTON FRAMEWORK

THEOREM 7.4 (Drift restriction in the HJM model). In the HJM model, we

necessarily have
1 T
A(t,T) = —522(t,T) and  a(t,T) za(t,T)/ o(t,u)du.
t

THEOREM 7.5 (Bond-price dynamics in the HIM model). In the HIM model,

the price of a zero-coupon bond with maturity T satisfies the stochastic differential

equations
dP(t,T) = r(t)P(t,T)dt + X(t, T)P(t, T)dW (t)
and
1 XL, T)—r(h) %(t,T)
dP(t,T) - P(t,T) dt = P(t,T) AW (®)-

THEOREM 7.6 (T-forward measure dynamics of the forward rate in the HIM
model). Under the T-forward measure QT , the instantaneous forward interest rate

with maturity T in the HIM model satisfies
df(t,T) = o(t, T)AWT (),
where the QT -Brownian motion W7 is defined by
dWT(t) = AW (t) — B(t, T)dt.

THEOREM 7.7 (Forward-rate dynamics in the HIM model). In the HJM model,
the simply-compounded forward interest rate for the period [T, S] satisfies the sto-

chastic differential equation

dF(;T,S) = (F(t; T,S) + ﬁ) (B(t,T) — 2(t, 8)) AW (t).

THEOREM 7.8 (Zero-coupon bond in the HIM model). Let 0 <t <T < S. In
the HJIM model, the price of a zero-coupon bond with maturity S at time T is given

by
P(t,S) 4,

P(T,S) =

where
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7.2. Gaussian HJM Model

DEFINITION 7.9 (Gaussian HIM Model). A Gaussian HJIM model is an HIM

model in which o is a deterministic function.

THEOREM 7.10 (Option on a zero-coupon bond in a Gaussian HJM model).
In a Gaussian HIM model, the price of a Furopean call option with strike K and

maturity T and written on a zero-coupon bond with maturity S at time t € [0,T] is

given by
ZBC(t,T,S,K) = P(t,S)®(h) — KP(t,T)®(h — o¥),
where
T
o = / (S(u,S) — 2(u, T))* du
¢
and

1 P(t,S) o*
h=on <P(t,T)K) T

The price of a corresponding put option is given by
ZBP(t,T,5,K) = KP(t,T)®(—h + c*) — P(t,S)®(—h).

DEFINITION 7.11 (Futures price). The futures price at time ¢ of an asset whose

value at time 7" >t > 0 is X(T') is given by
Fut(t,T) = E(X(T)|F(¢)).
THEOREM 7.12 (Futures contract on a zero-coupon bond in a Gaussian HJM

model). In a Gaussian HJIM model, the price of a futures contract with maturity T

on a zero-coupon bond at time T with maturity S is given by

FUT(L,T, §) = % exp {/f S, T) (5w, T) — S(u, 5)) du} .

7.3. Ritchken—Sankarasubramanian Model

DEFINITION 7.13 (HJM model with separable volatility). An HJM model with
separable volatility is an HJM model in which there exist positive functions £ and

7 such that

o(t,T) = &()n(T).
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THEOREM 7.14 (Zero-coupon bond in an HJM model with separable volatility).
In an HJM model with separable volatility, the price of a zero-coupon bond with
maturity T at time t € [0,T)] is given by

P(0,7)

P@#T) = P(0,t)

exp {f(07 t)B(t,T) — %qﬁ(t)Bz(u T)} e TWBWT)
where

t T
6(t) = /O o2(u,)du and B(t,T):ﬁ /t n(u)du.

THEOREM 7.15 (Short-rate dynamics in an HJM model with separable volatil-
ity). In an HJM model with separable volatility, the short rate satisfies the stochastic

differential equation
dr(t) = {af 09, ¢(t>} at + T =100) ;(f)(o’ D an(e)
+E(8)(dn(6)) (AW (2)) + o (£, 1)dW (1),

where ¢ is as in Theorem 7.14.

COROLLARY 7.16 (Short-rate dynamics in a Gaussian HJM model with separable
volatility). In an HJM model with separable volatility in which n is deterministic,

the short rate satisfies the stochastic differential equation

I I PN () O
dr(t) = { 5 £(0,¢) D) + ¢(t) +r(t) o) }dt +o(t, t)dW (t),

where ¢ is as in Theorem 7.14.

THEOREM 7.17 (Option on a zero-coupon bond in a Gaussian HJM model with
separable volatility). In a Gaussian HJM model with separable volatility, the price
of a Furopean call option with strike K and maturity T and written on a zero-

coupon bond with maturity S at time t € [0,T) is given by
ZBC(t, T, S, K) = P(t,S)®(h) — KP(t,T)®(h — o*),
where

T 1 P(t,S) o*
* __ 2 _ )
o* = DB(T,S) /t o?(u,T)du and h=— 111( 1) ) + 5

with B as in Theorem 7.14. The price of a corresponding put option is given by

ZBP(t,T, S, K) = KP(t,T)®(—h + ¢*) — P(t, S)®(—h).
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THEOREM 7.18 (Futures contract on a zero-coupon bond in a Gaussian HJM
model with separable volatility). In a Gaussian HIM model with separable volatil-
ity, the price of a futures contract with maturity T on a zero-coupon bond at time

T with maturity S is given by

P(t,S

FUT(t,T,S) exp {—B(T, S) /tT o(u,u)o(u, T)B(u,T)du}

= ]]zg: T% exp {— (/TS U(u)du) </tT n(s) /ts SQ(u)duds) } .

DEFINITION 7.19 (Ritchken-Sankarasubramanian model). The Ritchken—

Sankarasubramanian model is an HJM model with separable volatility for which

there exist functions o and k& such that

£(t) = o(t) exp{ /O tk(u)du} and (1) :eXp{f /0 tk(u)du}.

THEOREM 7.20 (Zero-coupon bond in the Ritchken-Sankarasubramanian
model). In the Ritchken—Sankarasubramanian model, the price of a zero-coupon

bond with maturity T at time t € [0,T] is given by

P.T) = p g ep { FO0BO.T) - o0B*e.T) fe 08,
where
o(1) :/0 o”(u) exp{—Z/ k(v)dv}du
and

B(t,T) = /tT exp {— /t k(u)du} ds.

THEOREM 7.21 (Short-rate dynamics in the Ritchken—Sankarasubramanian
model). In a Ritchken—Sankarasubramanian model in which k is deterministic and

positive, the short rate satisfies the stochastic differential equation

dr(t) = (k(t) £0,8) + w +o(t) — k(t)r(t)) dt + o(t)dW (t)

with ¢ as in Theorem 7.20.

DEFINITION 7.22 (Gaussian HJM model with exponentially damped volatil-
ity). A Gaussian HJIM model with ezponentially damped volatility is a Ritchken—

Sankarasubramanian model in which the functions ¢ and k are positive constants.
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THEOREM 7.23 (The Gaussian HJM model with exponentially damped volatil-
ity and the Hull-White model). Suppose r is the short rate in a Gaussian HJM
model with exponentially damped volatility. Then r is equal to the short rate in the

corresponding calibrated Hull-White model.

REMARK 7.24. Since for a Gaussian HJM model with exponentially damped

volatility we have

1— —k(T—t)
U(tv T) = Ueik(Tit)v B(tv T) = %7

T 2
2 _ o _—2k(T—t) _ o -2kt
/t o (u, T)du = ok (1 e ) ;o) = (1—e?M),

we may use Theorem 7.23 to show that

e Theorem 7.20 implies Theorem 5.12;
e Theorem 7.17 implies Theorem 5.13;
e Theorem 7.18 implies for the Hull-White model

P(t,S) a? 9
PULT) exp <—7B(T, S)B=(t, T)) .

DEFINITION 7.25 (Gaussian HJM model with constant volatility). A Gaussian

FUT(t,T,S) =

HJM model with constant volatility is a Ritchken—Sankarasubramanian model in

which o is a positive constant and k£ = 0.

THEOREM 7.26 (The Gaussian HJM model with constant volatility and the
Ho-Le model). Suppose r is the short rate in a Gaussian HJM model with constant
volatility. Then r is equal to the short rate in the corresponding calibrated Ho—Le

model.

REMARK 7.27. Since for a Gaussian HJM model with constant volatility we

have
T
ot,T)=0, B(tT)=T—t, / o?(u, T)du = c*(T —t), é(t) = ot,
t
we may use Theorem 7.26 to show that

e Theorem 7.20 implies Theorem 5.4;
e Theorem 7.17 implies the formula for ZBC from Theorem 5.2;
e Theorem 7.18 implies for the Ho—Le model

FUT(t,T, S) = % exp (f%(s —T)T - t)2> .
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7.4. Mercurio—Moraleda Model

DEFINITION 7.28 (Gaussian HJM model with volatility depending on time to
maturity). A Gaussian HIM model with wvolatility depending on time to maturity

is an HJM model in which there exists a deterministic function h such that
o(t,T) =h(T —t).

THEOREM 7.29 (Option on a zero-coupon bond in a Gaussian HJM model with
volatility depending on time to maturity). In a Gaussian HIM model with volatility
depending on time to maturity, the price of a European call option with strike K and
maturity T and written on a zero-coupon bond with maturity S at time t € [0,T] is
given by

ZBC(t,T,S,K) = P(t,S)®(h) — KP(t,T)®(h — o*),

where

2

T U+
U*—\// (/ h(as)dm) du  with 7=T—-t and pu=S-T
0 u

and
1 P(t,S) o*
h=—In(—-22 ) 42
' n<P(t,T)K> 3

The price of a corresponding put option is given by
ZBP(t,T,S,K) = KP(t,T)®(—h+ c*) — P(t,S)®(—h).

THEOREM 7.30 (Futures contract on a zero-coupon bond in a Gaussian HJM
model with volatility depending on time to maturity). In a Gaussian HJM model
with volatility depending on time to maturity, the price of a futures contract with

maturity T on a zero-coupon bond at time T with maturity S is given by

FUT(L, T, §) = ]]jg i; exp { /0 ’ ( /0 ' h(m)dm) ( /u o h(m)dx) du}

with 7 and p as in Theorem 7.29.

DEFINITION 7.31 (Mercurio-Moraleda model). The Mercurio—Moraleda model
is a Gaussian HJM model with volatility depending on time to maturity for which

there exist constants 0,7, A > 0 such that

hiz)=0c(1+ 'yﬂc)efgw.
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THEOREM 7.32 (Option on a zero-coupon bond in the Mercurio-Moraleda
model). In the Mercurio—Moraleda model, the price of a European call option with
strike K and maturity T and written on a zero-coupon bond with maturity S at

time t € [0,T] is given by

ZBC(t,T,S,K) = P(t,S)®(h) — KP(t,T)®(h — o),

where
* 20 22 2 A A
ot = W\/(a A2 4 2007 + 202)(1 — e=AT) — ABr(20A + 28 + BAT)e—"
and
1 P(t,S) o*
h=o 1“(P(t, )K)+ 2
with

a=A+29)(1—e ") —ydpe 2", B=yA(l—e 2H)
and T and p are as in Theorem 7.29. The price of a corresponding put option is
given by

ZBP(t,T,S,K) = KP(t,T)®(—h+0c") — P(t,S)®(—h).

THEOREM 7.33 (Futures contract on a zero-coupon bond in the Mercu-
rio-Moraleda model). In the Mercurio-Moraleda model, the price of a futures con-

tract with maturity T on a zero-coupon bond at time T with maturity S is given

by
_P(t,9) 402
FUT(¢,T,S) = PT) exp (vz>
with
_aogA? + agfBA 4 afor+ 2860, s, agBA + Boad + 288y 5\,
z = I (e —=1)+ 2 Te
BBo o _xr | 200(a) +20) -
FETeT + SRR (1) - S,

where o, B, T, i are as in Theorem 7.32 and

ap=A+2y and [y=~\



