
CHAPTER 7

Heath–Jarrow–Morton Framework

7.1. Heath–Jarrow–Morton Model

Definition 7.1 (Forward-rate dynamics in the HJM model). In the Heath–

Jarrow–Morton model, briefly HJM model, the instantaneous forward interest rate

with maturity T is assumed to satisfy the stochastic differential equation

df(t, T ) = α(t, T )dt + σ(t, T )dW (t),

where α and σ are adapted and W is a Brownian motion under the risk-neutral

measure.

Theorem 7.2 (Bond-price dynamics in the HJM model). In the HJM model,

the price of a zero-coupon bond with maturity T satisfies the stochastic differential

equation

dP (t, T ) =
(

r(t) + A(t, T ) +
1
2
Σ2(t, T )

)
P (t, T )dt + Σ(t, T )P (t, T )dW (t),

where

A(t, T ) = −
∫ T

t

α(t, u)du and Σ(t, T ) = −
∫ T

t

σ(t, u)du.

Theorem 7.3 (Bond-price dynamics implying HJM model). If the price of a

zero-coupon bond with maturity T satisfies the stochastic differential equation

dP (t, T ) = m(t, T )P (t, T )dt + v(t, T )P (t, T )dW (t),

where m and v are adapted, then the forward-rate dynamics are as in the HJM

model with

α(t, T ) = v(t, T )vT (t, T )−mT (t, T ) and σ(t, T ) = −vT (t, T ).
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Theorem 7.4 (Drift restriction in the HJM model). In the HJM model, we

necessarily have

A(t, T ) = −1
2
Σ2(t, T ) and α(t, T ) = σ(t, T )

∫ T

t

σ(t, u)du.

Theorem 7.5 (Bond-price dynamics in the HJM model). In the HJM model,

the price of a zero-coupon bond with maturity T satisfies the stochastic differential

equations

dP (t, T ) = r(t)P (t, T )dt + Σ(t, T )P (t, T )dW (t)

and

d
1

P (t, T )
=

Σ2(t, T )− r(t)
P (t, T )

dt− Σ(t, T )
P (t, T )

dW (t).

Theorem 7.6 (T -forward measure dynamics of the forward rate in the HJM

model). Under the T -forward measure QT , the instantaneous forward interest rate

with maturity T in the HJM model satisfies

df(t, T ) = σ(t, T )dWT (t),

where the QT -Brownian motion WT is defined by

dWT (t) = dW (t)− Σ(t, T )dt.

Theorem 7.7 (Forward-rate dynamics in the HJM model). In the HJM model,

the simply-compounded forward interest rate for the period [T, S] satisfies the sto-

chastic differential equation

dF (t; T, S) =
(

F (t; T, S) +
1

τ(T, S)

)
(Σ(t, T )− Σ(t, S)) dWS(t).

Theorem 7.8 (Zero-coupon bond in the HJM model). Let 0 ≤ t ≤ T ≤ S. In

the HJM model, the price of a zero-coupon bond with maturity S at time T is given

by

P (T, S) =
P (t, S)
P (t, T )

eZ ,

where

Z = −1
2

∫ T

t

(
Σ2(u, S)− Σ2(u, T )

)
du +

∫ T

t

(Σ(u, S)− Σ(u, T )) dW (u)

= −1
2

∫ T

t

(Σ(u, S)− Σ(u, T ))2 du +
∫ T

t

(Σ(u, S)− Σ(u, T )) dWT (u).
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7.2. Gaussian HJM Model

Definition 7.9 (Gaussian HJM Model). A Gaussian HJM model is an HJM

model in which σ is a deterministic function.

Theorem 7.10 (Option on a zero-coupon bond in a Gaussian HJM model).

In a Gaussian HJM model, the price of a European call option with strike K and

maturity T and written on a zero-coupon bond with maturity S at time t ∈ [0, T ] is

given by

ZBC(t, T, S,K) = P (t, S)Φ(h)−KP (t, T )Φ(h− σ∗),

where

σ∗ =

√∫ T

t

(Σ(u, S)− Σ(u, T ))2 du

and

h =
1
σ∗

ln
(

P (t, S)
P (t, T )K

)
+

σ∗

2
.

The price of a corresponding put option is given by

ZBP(t, T, S,K) = KP (t, T )Φ(−h + σ∗)− P (t, S)Φ(−h).

Definition 7.11 (Futures price). The futures price at time t of an asset whose

value at time T ≥ t ≥ 0 is X(T ) is given by

Fut(t, T ) = E(X(T )|F(t)).

Theorem 7.12 (Futures contract on a zero-coupon bond in a Gaussian HJM

model). In a Gaussian HJM model, the price of a futures contract with maturity T

on a zero-coupon bond at time T with maturity S is given by

FUT(t, T, S) =
P (t, S)
P (t, T )

exp

{∫ T

t

Σ(u, T ) (Σ(u, T )− Σ(u, S)) du

}
.

7.3. Ritchken–Sankarasubramanian Model

Definition 7.13 (HJM model with separable volatility). An HJM model with

separable volatility is an HJM model in which there exist positive functions ξ and

η such that

σ(t, T ) = ξ(t)η(T ).
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Theorem 7.14 (Zero-coupon bond in an HJM model with separable volatility).

In an HJM model with separable volatility, the price of a zero-coupon bond with

maturity T at time t ∈ [0, T ] is given by

P (t, T ) =
P (0, T )
P (0, t)

exp
{

f(0, t)B(t, T )− 1
2
φ(t)B2(t, T )

}
e−r(t)B(t,T ),

where

φ(t) =
∫ t

0

σ2(u, t)du and B(t, T ) =
1

η(t)

∫ T

t

η(u)du.

Theorem 7.15 (Short-rate dynamics in an HJM model with separable volatil-

ity). In an HJM model with separable volatility, the short rate satisfies the stochastic

differential equation

dr(t) =
{

∂f(0, t)
∂t

+ φ(t)
}

dt +
r(t)− f(0, t)

η(t)
dη(t)

+ξ(t)(dη(t))(dW (t)) + σ(t, t)dW (t),

where φ is as in Theorem 7.14.

Corollary 7.16 (Short-rate dynamics in a Gaussian HJM model with separable

volatility). In an HJM model with separable volatility in which η is deterministic,

the short rate satisfies the stochastic differential equation

dr(t) =
{

∂f(0, t)
∂t

− f(0, t)
η′(t)
η(t)

+ φ(t) + r(t)
η′(t)
η(t)

}
dt + σ(t, t)dW (t),

where φ is as in Theorem 7.14.

Theorem 7.17 (Option on a zero-coupon bond in a Gaussian HJM model with

separable volatility). In a Gaussian HJM model with separable volatility, the price

of a European call option with strike K and maturity T and written on a zero-

coupon bond with maturity S at time t ∈ [0, T ] is given by

ZBC(t, T, S,K) = P (t, S)Φ(h)−KP (t, T )Φ(h− σ∗),

where

σ∗ = B(T, S)

√∫ T

t

σ2(u, T )du and h =
1
σ∗

ln
(

P (t, S)
P (t, T )K

)
+

σ∗

2

with B as in Theorem 7.14. The price of a corresponding put option is given by

ZBP(t, T, S,K) = KP (t, T )Φ(−h + σ∗)− P (t, S)Φ(−h).
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Theorem 7.18 (Futures contract on a zero-coupon bond in a Gaussian HJM

model with separable volatility). In a Gaussian HJM model with separable volatil-

ity, the price of a futures contract with maturity T on a zero-coupon bond at time

T with maturity S is given by

FUT(t, T, S) =
P (t, S)
P (t, T )

exp

{
−B(T, S)

∫ T

t

σ(u, u)σ(u, T )B(u, T )du

}

=
P (t, S)
P (t, T )

exp

{
−

(∫ S

T

η(u)du

)(∫ T

t

η(s)
∫ s

t

ξ2(u)duds

)}
.

Definition 7.19 (Ritchken–Sankarasubramanian model). The Ritchken–

Sankarasubramanian model is an HJM model with separable volatility for which

there exist functions σ and k such that

ξ(t) = σ(t) exp
{∫ t

0

k(u)du

}
and η(t) = exp

{
−

∫ t

0

k(u)du

}
.

Theorem 7.20 (Zero-coupon bond in the Ritchken–Sankarasubramanian

model). In the Ritchken–Sankarasubramanian model, the price of a zero-coupon

bond with maturity T at time t ∈ [0, T ] is given by

P (t, T ) =
P (0, T )
P (0, t)

exp
{

f(0, t)B(t, T )− 1
2
φ(t)B2(t, T )

}
e−r(t)B(t,T ),

where

φ(t) =
∫ t

0

σ2(u) exp
{
−2

∫ t

u

k(v)dv

}
du

and

B(t, T ) =
∫ T

t

exp
{
−

∫ s

t

k(u)du

}
ds.

Theorem 7.21 (Short-rate dynamics in the Ritchken–Sankarasubramanian

model). In a Ritchken–Sankarasubramanian model in which k is deterministic and

positive, the short rate satisfies the stochastic differential equation

dr(t) =
(

k(t)f(0, t) +
∂f(0, t)

∂t
+ φ(t)− k(t)r(t)

)
dt + σ(t)dW (t)

with φ as in Theorem 7.20.

Definition 7.22 (Gaussian HJM model with exponentially damped volatil-

ity). A Gaussian HJM model with exponentially damped volatility is a Ritchken–

Sankarasubramanian model in which the functions σ and k are positive constants.
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Theorem 7.23 (The Gaussian HJM model with exponentially damped volatil-

ity and the Hull–White model). Suppose r is the short rate in a Gaussian HJM

model with exponentially damped volatility. Then r is equal to the short rate in the

corresponding calibrated Hull–White model.

Remark 7.24. Since for a Gaussian HJM model with exponentially damped

volatility we have

σ(t, T ) = σe−k(T−t), B(t, T ) =
1− e−k(T−t)

k
,∫ T

t

σ2(u, T )du =
σ2

2k

(
1− e−2k(T−t)

)
, φ(t) =

σ2

2k

(
1− e−2kt

)
,

we may use Theorem 7.23 to show that

• Theorem 7.20 implies Theorem 5.12;

• Theorem 7.17 implies Theorem 5.13;

• Theorem 7.18 implies for the Hull–White model

FUT(t, T, S) =
P (t, S)
P (t, T )

exp
(
−σ2

2
B(T, S)B2(t, T )

)
.

Definition 7.25 (Gaussian HJM model with constant volatility). A Gaussian

HJM model with constant volatility is a Ritchken–Sankarasubramanian model in

which σ is a positive constant and k = 0.

Theorem 7.26 (The Gaussian HJM model with constant volatility and the

Ho–Le model). Suppose r is the short rate in a Gaussian HJM model with constant

volatility. Then r is equal to the short rate in the corresponding calibrated Ho–Le

model.

Remark 7.27. Since for a Gaussian HJM model with constant volatility we

have

σ(t, T ) = σ, B(t, T ) = T − t,

∫ T

t

σ2(u, T )du = σ2(T − t), φ(t) = σ2t,

we may use Theorem 7.26 to show that

• Theorem 7.20 implies Theorem 5.4;

• Theorem 7.17 implies the formula for ZBC from Theorem 5.2;

• Theorem 7.18 implies for the Ho–Le model

FUT(t, T, S) =
P (t, S)
P (t, T )

exp
(
−σ2

2
(S − T )(T − t)2

)
.
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7.4. Mercurio–Moraleda Model

Definition 7.28 (Gaussian HJM model with volatility depending on time to

maturity). A Gaussian HJM model with volatility depending on time to maturity

is an HJM model in which there exists a deterministic function h such that

σ(t, T ) = h(T − t).

Theorem 7.29 (Option on a zero-coupon bond in a Gaussian HJM model with

volatility depending on time to maturity). In a Gaussian HJM model with volatility

depending on time to maturity, the price of a European call option with strike K and

maturity T and written on a zero-coupon bond with maturity S at time t ∈ [0, T ] is

given by

ZBC(t, T, S,K) = P (t, S)Φ(h)−KP (t, T )Φ(h− σ∗),

where

σ∗ =

√∫ τ

0

(∫ u+μ

u

h(x)dx

)2

du with τ = T − t and μ = S − T

and

h =
1
σ∗

ln
(

P (t, S)
P (t, T )K

)
+

σ∗

2
.

The price of a corresponding put option is given by

ZBP(t, T, S,K) = KP (t, T )Φ(−h + σ∗)− P (t, S)Φ(−h).

Theorem 7.30 (Futures contract on a zero-coupon bond in a Gaussian HJM

model with volatility depending on time to maturity). In a Gaussian HJM model

with volatility depending on time to maturity, the price of a futures contract with

maturity T on a zero-coupon bond at time T with maturity S is given by

FUT(t, T, S) =
P (t, S)
P (t, T )

exp
{∫ τ

0

(∫ u

0

h(x)dx

)(∫ u+μ

u

h(x)dx

)
du

}

with τ and μ as in Theorem 7.29.

Definition 7.31 (Mercurio–Moraleda model). The Mercurio–Moraleda model

is a Gaussian HJM model with volatility depending on time to maturity for which

there exist constants σ, γ, λ > 0 such that

h(x) = σ(1 + γx)e−
λ
2 x.
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Theorem 7.32 (Option on a zero-coupon bond in the Mercurio–Moraleda

model). In the Mercurio–Moraleda model, the price of a European call option with

strike K and maturity T and written on a zero-coupon bond with maturity S at

time t ∈ [0, T ] is given by

ZBC(t, T, S,K) = P (t, S)Φ(h)−KP (t, T )Φ(h− σ∗),

where

σ∗ =
2σ

λ7/2

√
(α2λ2 + 2αβλ + 2β2)(1− e−λτ )− λβτ(2αλ + 2β + βλτ)e−λτ

and

h =
1
σ∗

ln
(

P (t, S)
P (t, T )K

)
+

σ∗

2
with

α = (λ + 2γ)(1− e−
λ
2 μ)− γλμe−

λ
2 μ, β = γλ(1− e−

λ
2 μ)

and τ and μ are as in Theorem 7.29. The price of a corresponding put option is

given by

ZBP(t, T, S,K) = KP (t, T )Φ(−h + σ∗)− P (t, S)Φ(−h).

Theorem 7.33 (Futures contract on a zero-coupon bond in the Mercu-

rio–Moraleda model). In the Mercurio–Moraleda model, the price of a futures con-

tract with maturity T on a zero-coupon bond at time T with maturity S is given

by

FUT(t, T, S) =
P (t, S)
P (t, T )

exp
(

4σ2

λ4
z

)
with

z =
αα0λ

2 + α0βλ + αβ0λ + 2ββ0

λ3
(e−λτ − 1) +

α0βλ + β0αλ + 2ββ0

λ2
τe−λτ

+
ββ0

λ
τ2e−λτ +

2α0(αλ + 2β)
λ2

(
1− e−

λ
2 τ

)
− 2βα0

λ
τe−

λ
2 τ ,

where α, β, τ, μ are as in Theorem 7.32 and

α0 = λ + 2γ and β0 = γλ.


