

Winter Term 10/11

INSTITUTE OF MATHEMATICAL FINANCE

Dr. Martin Bohner Andreas Rupp

Fixed Income Models

Exercise Sheet 2

(Due: Tuesday 11/16/2010)

6. (Ito's formula)

Let W be a Brownian motion. For arbitrary $n \in \mathbb{N}$ find a formula for

$$\int_0^t W^n(s) dW(s).$$

7. (Ito's formula, Integration by parts)

Let W be a Brownian motion. Prove the following "integration by parts" formula for $n \in \mathbb{N}$:

$$\int_0^t s^n dW(s) = s^n W(t) - \int_0^t n s^{n-1} W(s) ds.$$

8. (Brownian motion)

Show that if W is a Brownian motion, then

$$\mathbb{E}\left(W^2(t)\right) = t.$$

9. (Brownian motion, Covariance)

Show that for a Brownian motion W, the covariance between two time points s and t can be computed as

$$\mathbb{C}\mathrm{ov}\left(W(s),W(t)\right) = \min\left\{s,t\right\}.$$

10. (Brownian motion)

Let Y be a standard normally distributed random variable and define $X(t) = \sqrt{t}Y$. Is the process X a Brownian motion?

11. (Log-normal distribution)

Let Y be a normally distributed random variable with $\mathbb{E}(Y) = \mu$ and $\mathbb{V}(Y) = \sigma^2$. Show that

$$\mathbb{E}\left(e^Y\right) = e^{\mu + \frac{\sigma^2}{2}}.$$

12. (Generalized geometric Brownian motion)

Compute

$$\mathbb{E}\left(X(t)|\mathcal{F}(s)\right)$$

and

$$\mathbb{V}\left(X(t)|\mathcal{F}(s)\right)$$
,

where X is the solution of the SDE

$$dX(t) = \mu(t)X(t)dt + \sigma(t)X(t)dW(t).$$

13. (Stochastic Leibniz rule)

Let $\mu \in \mathbb{R}$ and $\sigma > 0$. Consider the two processes Y and Z with

$$dY(t) = Y(t) \left(\mu dt + \sigma dW(t) \right)$$

and

$$Z(t) = \exp\left(-\frac{1}{2}\frac{\mu^2}{\sigma^2}t - \frac{\mu}{\sigma}W(t)\right).$$

Determine the SDE that is satisfied by YZ.

14. (Option price)

Let K>0. Assume Y is a lognormally distributed random variable with $\mathbb{E}\left(\ln(Y)\right)=M$ and $\mathbb{V}\left(\ln(Y)\right)=V^2$. Show that

$$\mathbb{E}\left((Y-K)^{+}\right) = e^{M+\frac{V^{2}}{2}}\Phi\left(\frac{M-\ln(K)-V^{2}}{V}\right) - K\Phi\left(\frac{M-\ln(K)}{V}\right),$$

where Φ is the cdf of the standard normal distribution.