23. Determine whether the following $(V, +, \cdot)$ are real vector spaces and justify your claims.

(a)
$$V = \left\{ \begin{bmatrix} 1 \\ x \end{bmatrix} : x \in \mathbb{R} \right\}, \begin{bmatrix} 1 \\ x \end{bmatrix} + \begin{bmatrix} 1 \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ x+y \end{bmatrix}, c \cdot \begin{bmatrix} 1 \\ x \end{bmatrix} = \begin{bmatrix} 1 \\ cx \end{bmatrix};$$

(b) $V = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : x_1, x_2 \in \mathbb{R} \right\}, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + 2 + x_2 \\ y_1 + 2 + y_2 \end{bmatrix}, c \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} cx_1 \\ cx_2 \end{bmatrix};$

- (d) V the set of all invertible 2×2 -matrices, with usual matrix addition and multiplication of a matrix by a scalar;
- (e) V the set of all non-invertible 2×2 -matrices, with usual matrix addition and multiplication of a matrix by a scalar.
- 24. Which of the following sets are subspaces of \mathbb{R}^3 ? Again, justify your claims.
 - (a) The set of vectors in \mathbb{R}^3 with first component 0:
 - (b) The set of vectors in \mathbb{R}^3 with last component 4;
 - (c) The set of vectors in \mathbb{R}^3 whose components multiplied together gives zero:
 - (d) The set of vectors in \mathbb{R}^3 whose first two components are the same;
 - (e) The set of all linear combinations of the two vectors $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$;
 - (f) The set of vectors $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ whose components satisfy 4a b + 2c = 0; (g) The set of vectors $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ whose components satisfy 4a b + 2c 4 = 0.
- 25. Let V be the vector space consisting of all 3×3 -matrices (with usual matrix addition and multiplication of a matrix by a scalar). Find the smallest subspace which contains all symmetric matrices and all lower triangular matrices. What is the largest subspace which is contained in both of these subspaces?
- 26. Let V be a vector space and let U_1 and U_2 be subspaces. Prove that $U_1 \cap U_2$ is also a subspace of V. How about $U_1 \cup U_2$?