1. Write the system of equations

$$
x+2 y+3 z=14, \quad 2 x+3 y+z=11, \quad 3 x+y+2 z=11
$$

as $A v=b$, find the LDU decomposition of A, find c with $L c=b$, and find v with $D U v=c$.
2. Determine which of the following sets are subspaces of \mathbb{R}^{3} and give the dimension and basis for them:
(a) $V=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3}: x^{2}+z^{2}>3\right\}$
(b) $V=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3}: 2 x+6 y=4 z\right\}$.
3. Find the echelon form of

$$
A=\left[\begin{array}{lllll}
1 & 3 & 0 & 2 & 1 \\
1 & 3 & 0 & 4 & 2 \\
2 & 6 & 0 & 6 & 3
\end{array}\right]
$$

the basic and free variables, $\operatorname{rank} A$, all solutions to $A x=0$, and all solutions to $A x=\left[\begin{array}{ccc}7 & 10 & 17\end{array}\right]^{T}$.
4. Given are the vectors

$$
x_{1}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], x_{2}=\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right], x_{3}=\left[\begin{array}{c}
-4 \\
-3 \\
2 \\
1
\end{array}\right], x_{4}=\left[\begin{array}{c}
0 \\
-\frac{4}{3} \\
0 \\
1
\end{array}\right], x_{5}=\left[\begin{array}{l}
1 \\
0 \\
8 \\
0
\end{array}\right] .
$$

Are x_{1}, x_{2}, and x_{3} linearly independent? Are $x_{1}, x_{2}, x_{3}, x_{4}$, and x_{5} linearly independent? Find three pairs (i, j) with $x_{i} \perp x_{j}$. Determine the angle between x_{1} and x_{5}.
5. Find a basis and the dimension of each of the four fundamental subspaces of A from Problem 3.
6. Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Find the least-square solution to $A x=b$ and the projection of b onto the image of A.
7. Find all eigenvalues, eigenvectors, the trace, and the determinant of

$$
A=\left[\begin{array}{ccc}
0 & 0.95 & 0.6 \\
0.8 & 0 & 0 \\
0 & 0.5 & 0
\end{array}\right]
$$

8. If $S^{-1} A S=B$, prove that the characteristic polynomials of A and of B are the same.
