1. Rewrite

$$
u+2 v+3 w=7, \quad 2 u+5 v+6 w=1, \quad 3 u+6 v+7 w=1
$$

as an equation $A x=b$, find the $L D U$ Decomposition of A, find c such that $L c=b$, and find x such that $D U x=c$. Give the solution of the original problem and check your solution.
2. Given are the two matrices

$$
A=\left[\begin{array}{cc}
1 & 2 \\
3 & 5
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & 6 & 7
\end{array}\right]
$$

Find $A A^{T}, B^{T} A, I-A, 2 B, A^{-1}, B^{-1}, \mathcal{R}(A), \mathcal{N}(A), \mathcal{R}\left(B^{T}\right)$, and $\mathcal{N}(B)$.
3. Is the set of vectors in \mathbb{R}^{3} that have zero as the second component a subspace of \mathbb{R}^{3} ? How about the set of vectors in \mathbb{R}^{3} that have a nonnegative number as the second component? (Prove your claims, of course).
4. Let B, C, and X be real $n \times n$-matrices that satisfy

$$
X^{T} X+B^{T} X+X^{T} B+C=0
$$

Show that under these assumptions C must be necessarily symmetric.

