1. Find a basis and the dimension for each of the four fundamental subspaces of $\left[\begin{array}{cccc}1 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8\end{array}\right]$.
2. Let $x=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]^{T}$ and $y=\left[\begin{array}{llll}1 & 1 & 2 & 3\end{array}\right]^{T}$. Find the angle between x and y. Also, find all vectors that are orthogonal to both x and y.
3. A secret message (x, y) is linearly encoded and sent from A to B, where it is encoded again (also linearly, but maybe with a different code) and sent to C. Spies find out that the message $(1,2)$ from A arrives as $(-1,3)$ in B and as $(5,-4)$ in C. Also, they find that $(3,5)$ from A arrives as $(15,-9)$ in C and $(4,2)$ from B arrives as $(8,2)$ in C. Now, if $(10,4)$ arrives in C, which was the original message and which message arrived in B ?
4. Let $x, y \in \mathbb{R}^{n}$. Prove the inequality $\|x+y\| \leq\|x\|+\|y\|$. (Hint: Start with calculating $\|x+y\|^{2}$ and use the Cauchy-Schwarz Inequality.)
