1. Solve the system $2 u+v=8,4 u-\frac{3}{2} v=9$ using each of the four methods presented in class.
2. Find a polynomial of degree two whose graph goes through the points:
(a) $(1,-1),(2,3)$, and $(3,13)$;
(b) $\left(1, s_{1}\right),\left(2, s_{2}\right)$, and $\left(3, s_{3}\right)$, where $s_{1}, s_{2}, s_{3} \in \mathbb{R}$.
3. For the following systems of equations, do the following: Rewrite the systems as an equation $A x=b$, do Gaussian Elimination and write down the elementary matrices needed, find the LDU Decomposition of A, find c such that $L c=b$ and finally find x such that $D U x=c$:
(a) $2 u+4 v=3,3 u+7 v=2$;
(b) $3 u+5 v+3 w=25,7 u+9 v+19 w=65,-4 u+5 v+11 w=5$;
(c) $u+2 v+3 w=39, u+3 v+2 w=34,3 u+2 v+w=26$;
(d) $u+3 v+5 w=1,3 u+12 v+18 w=1,5 u+18 v+30 w=1$;
(e) $\alpha u+\beta v=1, \beta u+\gamma v=1\left(\right.$ where $\left.\alpha, \beta, \gamma \in \mathbb{R}, \alpha\left(\alpha \gamma-\beta^{2}\right) \neq 0\right)$.
4. Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1\end{array}\right], C=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$.
(a) Compute $A C, C B, A C B, A^{2}, B^{2}, C C^{T}$.
(b) Find A^{n} and B^{n} for all $n \in \mathbb{N}$ (prove your claim using the Principle of Mathematical Induction).
(c) Show that A is not invertible. Also show that B is invertible and find B^{-1}.
5. Prove Proposition 1.1(b), i.e., matrix operations are distributive.
6. Use the Gauss-Jordan method to find the inverses of:
(a) $\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$;
(b) $\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$;
(c) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 3\end{array}\right]$.
7. Find examples of 2×2-matrices with:
(a) $A^{2}=-I$ (A having only real entries);
(b) $B^{2}=0($ but $B \neq 0)$;
(c) $C D=-D C($ but $C D \neq 0)$;
(d) $E F=0$ (neither E nor F having any zero entries);
(e) $A B=A C$ but $B \neq C$;
(f) $A+B$ is not invertible but A and B are;
(g) $A+B$ is invertible but A and B are not;
(h) A and B are symmetric but $A B$ is not.
8. Prove Proposition 1.2, i.e., the LDU Factorization is unique.
9. Let A be any matrix. Show that $A A^{T}$ and $A^{T} A$ are both symmetric.
10. If A, B, and $A+B$ are invertible, show that $A^{-1}+B^{-1}$ is invertible and find a formula for its inverse in terms of $A, B, A+B$ and their inverses.
11. Consider an $m \times m$-matrix A whose entries are all nonnegative. Suppose the i th column sum of A is r_{i} and let $r=\max \left\{r_{i} \mid 1 \leq i \leq m\right\}$. Assume $r<1$.
(a) Show that all entries of A^{n} are less than r^{n}, for all $n \in \mathbb{N}$.
(b) Show that $\lim _{n \rightarrow \infty} A^{n}=0$ (meaning that all entries of A^{n} tend to 0 as $n \rightarrow \infty$).
(c) Show that $\lim _{n \rightarrow \infty} \sum_{k=0}^{n} A^{k}$ exists (again considering entries).
(d) Compute and simplify $(I-A) \sum_{k=0}^{n} A^{k}$ for all $n \in \mathbb{N}$.
(e) Calculate $\lim _{n \rightarrow \infty} \sum_{k=0}^{n} A^{k}$.
