12. Let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$. Find all matrices J for which $A J=A$.
13. Prove that diagonal matrices of the same order commute.
14. Let D be an arbitrary diagonal matrix. In which case is D invertible? If it is invertible, what is D^{-1} ?
15. Let A and D be square matrices of the same size. Assume that D is diagonal. Describe how $A D$ looks like. How about $D A$?
16. Let A be a matrix of size $m \times n$. Find a matrix P such that P multiplied with A exchanges the i th row and the j th row of A. What needs to be done if the i th column and the j th column of A should be exchanged?
17. Suppose that $(I+A)^{-1} A=B$ holds for two matrices A and B.
(a) Prove that A and B commute.
(b) Prove that, if B is invertible and diagonal, then also A is invertible and diagonal.
18. Let $A_{11}=\left[\begin{array}{l}2 \\ 0\end{array}\right], A_{12}=\left[\begin{array}{cc}1 & 3 \\ -1 & 2\end{array}\right], B_{11}=\left[\begin{array}{llll}3 & -7 & -7 & 2\end{array}\right]$, and $B_{21}=$ $\left[\begin{array}{cccc}-2 & 1 & 4 & 0 \\ 0 & 2 & 4 & 0\end{array}\right]$. Let $A=\left[\begin{array}{ccc}2 & 1 & 3 \\ 0 & -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cccc}3 & -7 & -7 & 2 \\ -2 & 1 & 4 & 0 \\ 0 & 2 & 4 & 0\end{array}\right]$. Show that $A B=A_{11} B_{11}+A_{12} B_{21}$. Also, state and prove a general theorem that can be used to solve such problems.
19. Let $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 1 & 1\end{array}\right]$. Find all vectors v that satisfy $A v=0$.
20. Let $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 4\end{array}\right], v_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 5 \\ 1\end{array}\right], v_{3}=\left[\begin{array}{c}1 \\ 6 \\ 10 \\ 14\end{array}\right]$. Find real numbers a, b, and c such that $a v_{1}+b v_{2}+c v_{3}=0$.
21. We would like to find a 3×3-matrix that has each of the numbers $1,2,3,4$, $5,6,7,8,9$ as its entries such that each row and each column and each of the two diagonals sums up to 15 . Don't solve this problem, but just describe it as a system $A x=b$ where $x \in \mathbb{R}^{9}$ is the vector that has the entries of the required matrix as its entries.
22. Find the inverse of the 5×5-matrix from Example 1.7 (b) (you may use Maple if you wish). Also, find the $u_{k}, 1 \leq k \leq 5$ if $f(x)=1$ and if $f(x)=x$. Compare them with the values $u(x)$ of the real solution of $u^{\prime \prime}(x)=f(x), u(0)=u(1)=0$.
