23. Let $V=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]: x_{1}, x_{2} \in \mathbb{R}\right\}$ and define addition" " " by $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{l}x_{1}+y_{1} \\ x_{2}+y_{2}\end{array}\right]$ whenever $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right],\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right] \in V$ and scalar multiplication "." by $c \cdot\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}c x_{1} \\ c x_{2}\end{array}\right]$ whenever $c \in \mathbb{R},\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in V$. Show in detail that $(V,+, \cdot)$ is a real vector space.
24. Let $n \in \mathbb{N}$ and let V be the set of polynomials $p: \mathbb{R} \rightarrow \mathbb{R}$ with degree not exceeding n and define addition " + " by $(p+q)(x)=p(x)+q(x)$ for all $x \in \mathbb{R}$ whenever $p, q \in V$ and scalar multiplication "." by $(c \cdot p)(x)=c p(x)$ for all $x \in \mathbb{R}$ whenever $c \in \mathbb{R}$ and $p \in V$. Show in detail that $(V,+, \cdot)$ is a real vector space.
25. Determine whether the following $(V,+, \cdot)$ are real vector spaces and justify your claims.
(a) $V=\left\{\left[\begin{array}{c}1 \\ x\end{array}\right]: x \in \mathbb{R}\right\},\left[\begin{array}{c}1 \\ x\end{array}\right]+\left[\begin{array}{l}1 \\ y\end{array}\right]=\left[\begin{array}{c}1 \\ x+y\end{array}\right], c \cdot\left[\begin{array}{c}1 \\ x\end{array}\right]=\left[\begin{array}{c}1 \\ c x\end{array}\right]$;
(b) $V=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]: x_{1}, x_{2} \in \mathbb{R}\right\},\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{c}x_{1}+2+x_{2} \\ y_{1}+2+y_{2}\end{array}\right], c \cdot\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}c x_{1} \\ c x_{2}\end{array}\right]$;
(c) $V=(0, \infty), x+y=x y, c \cdot x=x^{c}$;
(d) V the set of all invertible 2×2-matrices, with usual matrix addition and multiplication of a matrix by a scalar;
(e) V the set of all non-invertible 2×2-matrices, with usual matrix addition and multiplication of a matrix by a scalar.
26. Which of the following sets are subspaces of \mathbb{R}^{3} ? Again, justify your claims.
(a) The set of vectors in \mathbb{R}^{3} with first component 0 ;
(b) The set of vectors in \mathbb{R}^{3} with last component 4;
(c) The set of vectors in \mathbb{R}^{3} whose components multiplied together gives zero;
(d) The set of vectors in \mathbb{R}^{3} whose first two components are the same;
(e) The set of all linear combinations of the two vectors $\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]$ and $\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$;
(f) The set of vectors $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ whose components satisfy $4 a-b+2 c=0$;
(g) The set of vectors $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ whose components satisfy $4 a-b+2 c-4=0$.
27. Let V be the vector space consisting of all 3×3-matrices (with usual matrix addition and multiplication of a matrix by a scalar). Find the smallest subspace which contains all symmetric matrices and all lower triangular matrices. What is the largest subspace which is contained in both of these subspaces?
28. Let V be a vector space and let U_{1} and U_{2} be subspaces. Prove that $U_{1} \cap U_{2}$ is also a subspace of V. How about $U_{1} \cup U_{2}$?
29. Find the column space and the row space of the following matrices:
(a) $\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]$;
(b) $\left[\begin{array}{cc}4 & 2 \\ 1 & -1\end{array}\right]$;
(c) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$;
(d) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.
