23. Let
$$V = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : x_1, x_2 \in \mathbb{R} \right\}$$
 and define addition "+" by $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \end{bmatrix}$
whenever $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \in V$ and scalar multiplication "·" by $c \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} cx_1 \\ cx_2 \end{bmatrix}$ whenever $c \in \mathbb{R}, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in V$. Show in detail that $(V, +, \cdot)$ is a real vector space.

- 24. Let $n \in \mathbb{N}$ and let V be the set of polynomials $p : \mathbb{R} \to \mathbb{R}$ with degree not exceeding n and define addition "+" by (p+q)(x) = p(x) + q(x) for all $x \in \mathbb{R}$ whenever $p, q \in V$ and scalar multiplication "·" by $(c \cdot p)(x) = cp(x)$ for all $x \in \mathbb{R}$ whenever $c \in \mathbb{R}$ and $p \in V$. Show in detail that $(V, +, \cdot)$ is a real vector space.
- 25. Determine whether the following $(V, +, \cdot)$ are real vector spaces and justify your claims.

(a)
$$V = \left\{ \begin{bmatrix} 1 \\ x \end{bmatrix} : x \in \mathbb{R} \right\}, \begin{bmatrix} 1 \\ x \end{bmatrix} + \begin{bmatrix} 1 \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ x+y \end{bmatrix}, c \cdot \begin{bmatrix} 1 \\ x \end{bmatrix} = \begin{bmatrix} 1 \\ cx \end{bmatrix};$$

(b) $V = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : x_1, x_2 \in \mathbb{R} \right\}, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1+2+x_2 \\ y_1+2+y_2 \end{bmatrix}, c \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} cx_1 \\ cx_2 \end{bmatrix};$
(c) $V = (0, x_2)$ where $x_1 = x_2$ are set.

- (c) $V = (0, \infty), x + y = xy, c \cdot x = x^c;$
- (d) V the set of all invertible 2×2 -matrices, with usual matrix addition and multiplication of a matrix by a scalar;
- (e) V the set of all non-invertible 2×2 -matrices, with usual matrix addition and multiplication of a matrix by a scalar.
- 26. Which of the following sets are subspaces of \mathbb{R}^3 ? Again, justify your claims.
 - (a) The set of vectors in \mathbb{R}^3 with first component 0;
 - (b) The set of vectors in \mathbb{R}^3 with last component 4;
 - (c) The set of vectors in \mathbb{R}^3 whose components multiplied together gives zero;
 - (d) The set of vectors in $I\!\!R^3$ whose first two components are the same;

(e) The set of all linear combinations of the two vectors $\begin{bmatrix} 2\\0\\3 \end{bmatrix}$ and $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$;

(f) The set of vectors
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
 whose components satisfy $4a - b + 2c = 0$;
(g) The set of vectors $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ whose components satisfy $4a - b + 2c - 4 = 0$.

- 27. Let V be the vector space consisting of all 3×3 -matrices (with usual matrix addition and multiplication of a matrix by a scalar). Find the smallest subspace which contains all symmetric matrices and all lower triangular matrices. What is the largest subspace which is contained in both of these subspaces?
- 28. Let V be a vector space and let U_1 and U_2 be subspaces. Prove that $U_1 \cap U_2$ is also a subspace of V. How about $U_1 \cup U_2$?
- 29. Find the column space and the row space of the following matrices:

(a)
$$\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix};$$

(b)
$$\begin{bmatrix} 4 & 2 \\ 1 & -1 \end{bmatrix};$$

(c)
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix};$$

(d)
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$