30. For each of the following matrices A, find $\mathcal{N}(A)$ and $\mathcal{R}(A^T)$. Draw a picture featuring these two spaces.

(a)
$$A = \begin{bmatrix} 2 & 1 \end{bmatrix};$$
 (b) $A = \begin{bmatrix} -2 & -1 \end{bmatrix};$ (c) $A = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix};$
(d) $A = \begin{bmatrix} 4 & 2 \\ 1 & -1 \end{bmatrix};$ (e) $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix};$ (f) $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix};$
(g) $A = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix};$ (h) $A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & -1 & 3 \end{bmatrix};$ (i) $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & -1 & 1 \\ 3 & 3 & 2 \end{bmatrix}.$
31. Let $v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$

(a) Find the smallest subspace U_1 of \mathbb{R}^3 that contains v_1 .

- (b) Find the smallest subspace U_2 of R^3 that contains v_2 .
- (c) Find the sum U of these two subspaces U_1 and U_2 , that is, the set of all possible combinations x + y, where $x \in U_1$ and $y \in U_2$.
- (d) Finally find a subspace U_3 that satisfies $U + U_3 = \mathbb{R}^3$ and $U \cap U_3 = \{0\}$.
- 32. Find the sum of $\mathcal{N}(A)$ and $\mathcal{R}(A^T)$ for each of the matrices A from Problem 30.
- 33. We call a matrix P idempotent if $P^2 = P$.
 - (a) Give five explicit examples of idempotent 2×2 -matrices.
 - (b) Find all idempotent 2×2 -matrices.
 - (c) Let P be idempotent. Prove that I P is also idempotent.
 - (d) Let P be idempotent. Prove the formula $\mathcal{R}(I P) = \mathcal{N}(P)$.
 - (e) Let P be idempotent. Prove the formula $\mathcal{N}(I-P) = \mathcal{R}(P)$.
 - (f) Let P be idempotent. Find $\mathcal{N}(P) + \mathcal{R}(P)$.
- 34. Show in general that the sum of two subspaces of a vector space is again a subspace.

35. Let $A = \begin{bmatrix} 0 & 1 & 4 & 0 \\ 0 & 2 & 8 & 0 \end{bmatrix}$.

- (a) Find the echelon form of A, the basic variables, the free variables, and the solution to Ax = 0.
- (b) For which b is the system Ax = b solvable?
- (c) Find the echelon form of A^T , the basic variables, the free variables, and the solution to $A^T x = 0$.
- (d) For which b is the system $A^T x = b$ solvable?
- 36. Find all polynomials of degree two or less that pass through the points (1, 1) and (2, 2).