30. For each of the following matrices A, find $\mathcal{N}(A)$ and $\mathcal{R}\left(A^{T}\right)$. Draw a picture featuring these two spaces.
(a) $A=\left[\begin{array}{ll}2 & 1\end{array}\right]$;
(b) $A=\left[\begin{array}{ll}-2 & -1\end{array}\right]$;
(c) $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]$;
(d) $A=\left[\begin{array}{cc}4 & 2 \\ 1 & -1\end{array}\right]$;
(e) $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$;
(f) $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$;
(g) $A=\left[\begin{array}{lll}2 & 1 & 3\end{array}\right]$;
(h) $A=\left[\begin{array}{ccc}2 & 1 & 3 \\ 1 & -1 & 3\end{array}\right]$;
(i) $A=\left[\begin{array}{ccc}2 & 1 & 0 \\ 1 & -1 & 1 \\ 3 & 3 & 2\end{array}\right]$.
31. Let $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.
(a) Find the smallest subspace U_{1} of R^{3} that contains v_{1}.
(b) Find the smallest subspace U_{2} of R^{3} that contains v_{2}.
(c) Find the sum U of these two subspaces U_{1} and U_{2}, that is, the set of all possible combinations $x+y$, where $x \in U_{1}$ and $y \in U_{2}$.
(d) Finally find a subspace U_{3} that satisfies $U+U_{3}=\mathbb{R}^{3}$ and $U \cap U_{3}=\{0\}$.
32. Find the sum of $\mathcal{N}(A)$ and $\mathcal{R}\left(A^{T}\right)$ for each of the matrices A from Problem 30.
33. We call a matrix P idempotent if $P^{2}=P$.
(a) Give five explicit examples of idempotent 2×2-matrices.
(b) Find all idempotent 2×2-matrices.
(c) Let P be idempotent. Prove that $I-P$ is also idempotent.
(d) Let P be idempotent. Prove the formula $\mathcal{R}(I-P)=\mathcal{N}(P)$.
(e) Let P be idempotent. Prove the formula $\mathcal{N}(I-P)=\mathcal{R}(P)$.
(f) Let P be idempotent. Find $\mathcal{N}(P)+\mathcal{R}(P)$.
34. Show in general that the sum of two subspaces of a vector space is again a subspace.
35. Let $A=\left[\begin{array}{llll}0 & 1 & 4 & 0 \\ 0 & 2 & 8 & 0\end{array}\right]$.
(a) Find the echelon form of A, the basic variables, the free variables, and the solution to $A x=0$.
(b) For which b is the system $A x=b$ solvable?
(c) Find the echelon form of A^{T}, the basic variables, the free variables, and the solution to $A^{T} x=0$.
(d) For which b is the system $A^{T} x=b$ solvable?
36. Find all polynomials of degree two or less that pass through the points $(1,1)$ and $(2,2)$.
