38. Find all solutions to $x_{2}+2 x_{3}=b_{1}, 4 x_{3}+2 x_{2}=b_{2}, 3 x_{2}+6 x_{3}=b_{3}$, and $4 x_{2}+x_{1}+8 x_{3}=b_{4}$ if
(a) $b_{1}=2, b_{2}=2, b_{3}=4$, and $b_{4}=5$;
(b) $b_{1}=6, b_{2}=2, b_{3}=4$, and $b_{4}=5$.
39. Suppose two matrices A and B satisfy $A B=0$. Show that the column space of B is contained in the nullspace of A.
40. Decide whether the following vectors are linearly independent or linearly dependent. For (a), (b), and (c), also draw a picture.
(a) $\left[\begin{array}{l}2 \\ 4\end{array}\right],\left[\begin{array}{l}3 \\ 6\end{array}\right]$;
(b) $\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right] ;$
(c) $\left[\begin{array}{c}7 \\ 11\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]$;
(d) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 7\end{array}\right]$;
(e) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]$;
(f) $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}5 \\ 6 \\ 7 \\ 8\end{array}\right],\left[\begin{array}{c}9 \\ 10 \\ 11 \\ 12\end{array}\right]$.
41. For which choices of a, b, c, d, e, f are $\left[\begin{array}{l}a \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}b \\ c \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}d \\ e \\ f \\ 0\end{array}\right]$ linearly independent?
42. Given are three linearly independent vectors v_{1}, v_{2}, v_{3}. Are the following vectors lineary independent?
(a) $v_{1}, v_{2}+v_{3}, v_{1}+v_{2}+v_{3}$;
(b) $v_{1}, v_{1}+v_{2}, v_{1}+v_{2}+v_{3}$.
43. Find a basis and the dimension of each of the subspaces from Problem 26. Also, find matrices A and B such that each of these subspaces equals to the column space of A and to the nullspace of B.
44. Find the ranks of the following matrices. Also find a basis and the dimension of the four fundamental subspaces of each of the matrices.
(a) All the matrices from Problem 30;
(b) The 4×4-matrix on Page 104 of the textbook;
(c) The 7×7-matrix on Page 477 of the textbook;
(d) $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right]$;
(e) $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 5 \\ 1 & 3 & 7\end{array}\right]$;
(f) $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$;
(g) $A=\left[\begin{array}{llll}1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1\end{array}\right]$;
(h) $A=\left[\begin{array}{lllll}1 & 2 & 0 & 3 & 5 \\ 0 & 0 & 1 & 4 & 6\end{array}\right]$;
(i) $A=\left[\begin{array}{llllll}0 & 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
