49. Let U and V be vector spaces and $L: U \to V$ be a linear transformation. Show that

- (a) $\mathcal{N}(L) = \{ u \in U : L(u) = 0 \}$ is a subspace of U;
- (b) $\mathcal{R}(L) = \{L(u) : u \in U\}$ is a subspace of V.
- 50. Let P_n be the set of all polynomials of degree smaller or equal to $n \in \mathbb{N}_0$. We know that P_n is $\lceil a_0 \rceil$

a vector space. For
$$p(t) = \sum_{k=0}^{n} a_k t^k$$
, define $v(p) = \begin{bmatrix} a_0 \\ \vdots \\ a_n \end{bmatrix} \in \mathbb{R}^n$. Let $q(t) = 1 - 4t^2 + 3t^3$.

- (a) For $q \in P_3$, find v(q).
- (b) Find a basis and the dimension of P_3 . Find v(b) for each element b in the basis.
- (c) Is $L(p) = p^2$ with $L: P_3 \to P_6$ a linear transformation?
- (d) Is L(p) = p + q with $L: P_3 \to P_3$ a linear transformation?
- 51. For the following transformations $L: P_3 \to P_n$ do the following: Pick *n*. Find L(q), where *q* is given in the previous problem. Find v(L(q)). Show that *L* is a linear transformation. Find a matrix *A* such that v(L(p)) = Av(p) for all $p \in P_3$. Find $\mathcal{N}(L)$ and $\mathcal{R}(L)$.
 - (a) L(p) = p';
 - (b) L(p) = pq;
 - (c) L(p) = p'';
 - (d) L(p) is the solution of the problem x' = p, x(0) = 0.

52. Find the lengths, the inner product, and the angle between

(a)
$$\begin{bmatrix} 2\\1 \end{bmatrix}$$
 and $\begin{bmatrix} 2\\5 \end{bmatrix}$ (also draw a picture); (b) $\begin{bmatrix} 1\\4\\0\\2 \end{bmatrix}$ and $\begin{bmatrix} 2\\-2\\1\\3 \end{bmatrix}$.

53. Find all vectors orthogonal to $\mathcal{R}(A)$, and all vectors orthogonal to $\mathcal{N}(A)$, if

(a)
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 3 \\ 3 & 6 & 4 \end{bmatrix}$$
; (b) $A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 4 \end{bmatrix}$.

54. Find all vectors orthogonal to

(a)
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 and $\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$; (b) $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$ and $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$.

55. Prove the following statements where $x, y, z \in \mathbb{R}^n$. Draw a picture for n = 2.

(a) $||x|| \ge 0$ and ||x|| = 0 iff x = 0. (b) $||\lambda x|| = |\lambda|||x||$ for all $\lambda \in I\!\!R$. (c) $(x - y) \perp (x + y)$ iff ||x|| = ||y||. (d) $(x - z) \perp (y - z)$ iff $||x - z||^2 + ||y - z||^2 = ||x - y||^2$. (e) $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$.