49. Let U and V be vector spaces and $L: U \rightarrow V$ be a linear transformation. Show that
(a) $\mathcal{N}(L)=\{u \in U: L(u)=0\}$ is a subspace of U;
(b) $\mathcal{R}(L)=\{L(u): u \in U\}$ is a subspace of V.
50. Let P_{n} be the set of all polynomials of degree smaller or equal to $n \in \mathbb{N}_{0}$. We know that P_{n} is a vector space. For $p(t)=\sum_{k=0}^{n} a_{k} t^{k}$, define $v(p)=\left[\begin{array}{c}a_{0} \\ \vdots \\ a_{n}\end{array}\right] \in \mathbb{R}^{n}$. Let $q(t)=1-4 t^{2}+3 t^{3}$.
(a) For $q \in P_{3}$, find $v(q)$.
(b) Find a basis and the dimension of P_{3}. Find $v(b)$ for each element b in the basis.
(c) Is $L(p)=p^{2}$ with $L: P_{3} \rightarrow P_{6}$ a linear transformation?
(d) Is $L(p)=p+q$ with $L: P_{3} \rightarrow P_{3}$ a linear transformation?
51. For the following transformations $L: P_{3} \rightarrow P_{n}$ do the following: Pick n. Find $L(q)$, where q is given in the previous problem. Find $v(L(q))$. Show that L is a linear transformation. Find a matrix A such that $v(L(p))=A v(p)$ for all $p \in P_{3}$. Find $\mathcal{N}(L)$ and $\mathcal{R}(L)$.
(a) $L(p)=p^{\prime}$;
(b) $L(p)=p q$;
(c) $L(p)=p^{\prime \prime}$;
(d) $L(p)$ is the solution of the problem $x^{\prime}=p, x(0)=0$.
52. Find the lengths, the inner product, and the angle between

$$
\text { (a) }\left[\begin{array}{l}
2 \\
1
\end{array}\right] \text { and }\left[\begin{array}{l}
2 \\
5
\end{array}\right] \text { (also draw a picture); (b) }\left[\begin{array}{l}
1 \\
4 \\
0 \\
2
\end{array}\right] \text { and }\left[\begin{array}{c}
2 \\
-2 \\
1 \\
3
\end{array}\right]
$$

53. Find all vectors orthogonal to $\mathcal{R}(A)$, and all vectors orthogonal to $\mathcal{N}(A)$, if

$$
\text { (a) } A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & 4 & 3 \\
3 & 6 & 4
\end{array}\right] ; \quad \text { (b) } A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
1 & 1 & 4
\end{array}\right] \text {. }
$$

54. Find all vectors orthogonal to

$$
\text { (a) }\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \text { and }\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] ; \quad \text { (b) }\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \text { and }\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] .
$$

55. Prove the following statements where $x, y, z \in R^{n}$. Draw a picture for $n=2$.
(a) $\|x\| \geq 0$ and $\|x\|=0$ iff $x=0$.
(b) $\|\lambda x\|=|\lambda|\|x\|$ for all $\lambda \in \mathbb{R}$.
(c) $(x-y) \perp(x+y)$ iff $\|x\|=\|y\|$.
(d) $(x-z) \perp(y-z)$ iff $\|x-z\|^{2}+\|y-z\|^{2}=\|x-y\|^{2}$.
(e) $\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)$.
