- 7. Solve the following initial value problems by separating the variables. Give the solutions explicitly and find their domains.
 - $\begin{array}{ll} \text{(a)} & y' = (1-2t)y^2, \, y(0) = -\frac{1}{6} & \text{(b)} & y' = -\frac{x}{y}, \, y(1) = 1; \\ \text{(c)} & y' = \frac{x^2}{y}, \, y(0) = 1; & \text{(d)} & y' = \frac{x^2}{y}, \, y(0) = -1; \\ \text{(e)} & y' = \frac{3x^2-1}{3+2y}, \, y(0) = 1; & \text{(f)} & \sin(2t) + \cos(3y)y' = 0, \, y(\frac{\pi}{2}) = \frac{\pi}{3}. \end{array}$
- 8. Consider the linear first order equation with constant coefficients y' = ry + k.
 - (a) Find the general solution.
 - (b) Find all constant solutions.
 - (c) Find the solution with y(0) = 2.
 - (d) For a given point (t_0, y_0) , find the solution that goes through this point.
 - (e) Characterize all increasing solutions. Characterize all decreasing solutions.
 - (f) Determine the behavior of the solutions as $t \to \infty$.
- 9. Find the solutions of the following initial value problems:
 - (a) y' = 5y 1, y(0) = 2;
 - (b) y' = -y + 4, y(1) = -1;
 - (c) 5y' = 2y 3, y(-2) = 3;
 - (d) 3y' 2y = 1, y(-1) = 0;
 - (e) -2u' + 2u 4 = 0, u(5) = 10.
- 10. Consider a certain product on the market. Let a demand function D(t) and a supply function S(t) for this product be given. Also, let the function P(t) describe the market price of the product (as a function of the time t). We assume that S and D depend linearly on the market price P: $D(t) = \alpha + aP(t), S(t) = \beta + bP(t).$
 - (a) According to the model, should we assume a < 0 or a > 0?
 - (b) According to the model, should we assume b < 0 or b > 0?
 - (c) Now we assume that P is changing proportionally to the difference D-S, with constant of proportionality γ . According to the model, should we assume $\gamma < 0$ or $\gamma > 0$?
 - (d) Derive a differential equation for P and solve it.
 - (e) Calculate the so-called equilibrium price of the product, i.e., determine $\lim_{t\to\infty} P(t)$.
- 11. Solve the following initial value problems:
 - (a) $y' y = 2te^{2t}, y(0) = 1;$ (b) $y' + 2y = te^{-2t}, y(1) = 0;$ (c) $ty' + 2y = t^2 t + 1, y(1) = \frac{1}{2}, t > 0;$ (d) $y' + \frac{2}{t}y = \frac{\cos(t)}{t^2}, y(\pi) = 0, t > 0;$ (e) $y' 2y = e^{2t}, y(0) = 2;$ (f) $ty' + 3y = t^2, y(1) = 0;$

 - (g) $y' = -t^2 y, y(0) = 1;$

- (h) $y' + 2ty = 2te^{-t^2}, y(2) = 0.$