7. Solve the following initial value problems by separating the variables. Give the solutions explicitly and find their domains.
(a) $y^{\prime}=(1-2 t) y^{2}, y(0)=-\frac{1}{6}$
(b) $y^{\prime}=-\frac{x}{y}, y(1)=1$;
(c) $y^{\prime}=\frac{x^{2}}{y}, y(0)=1$;
(d) $y^{\prime}=\frac{x^{2}}{y}, y(0)=-1$;
(e) $y^{\prime}=\frac{3 x^{2}-1}{3+2 y}, y(0)=1$;
(f) $\sin (2 t)+\cos (3 y) y^{\prime}=0, y\left(\frac{\pi}{2}\right)=\frac{\pi}{3}$.
8. Consider the linear first order equation with constant coefficients $y^{\prime}=r y+k$.
(a) Find the general solution.
(b) Find all constant solutions.
(c) Find the solution with $y(0)=2$.
(d) For a given point $\left(t_{0}, y_{0}\right)$, find the solution that goes through this point.
(e) Characterize all increasing solutions. Characterize all decreasing solutions.
(f) Determine the behavior of the solutions as $t \rightarrow \infty$.
9. Find the solutions of the following initial value problems:
(a) $y^{\prime}=5 y-1, y(0)=2$;
(b) $y^{\prime}=-y+4, y(1)=-1$;
(c) $5 y^{\prime}=2 y-3, y(-2)=3$;
(d) $3 y^{\prime}-2 y=1, y(-1)=0$;
(e) $-2 y^{\prime}+2 y-4=0, y(5)=10$.
10. Consider a certain product on the market. Let a demand function $D(t)$ and a supply function $S(t)$ for this product be given. Also, let the function $P(t)$ describe the market price of the product (as a function of the time t). We assume that S and D depend linearly on the market price $P: D(t)=\alpha+a P(t), S(t)=\beta+b P(t)$.
(a) According to the model, should we assume $a<0$ or $a>0$?
(b) According to the model, should we assume $b<0$ or $b>0$?
(c) Now we assume that P is changing proportionally to the difference $D-S$, with constant of proportionality γ. According to the model, should we assume $\gamma<0$ or $\gamma>0$?
(d) Derive a differential equation for P and solve it.
(e) Calculate the so-called equilibrium price of the product, i.e., determine $\lim _{t \rightarrow \infty} P(t)$.
11. Solve the following initial value problems:
(a) $y^{\prime}-y=2 t e^{2 t}, y(0)=1$;
(b) $y^{\prime}+2 y=t e^{-2 t}, y(1)=0$;
(c) $t y^{\prime}+2 y=t^{2}-t+1, y(1)=\frac{1}{2}, t>0$;
(d) $y^{\prime}+\frac{2}{t} y=\frac{\cos (t)}{t^{2}}, y(\pi)=0, t>0$;
(e) $y^{\prime}-2 y=e^{2 t}, y(0)=2$;
(f) $t y^{\prime}+3 y=t^{2}, y(1)=0$;
(g) $y^{\prime}=-t^{2} y, y(0)=1$;
(h) $y^{\prime}+2 t y=2 t e^{-t^{2}}, y(2)=0$.
