15. Solve the following initial value problems:

(a)
$$y'' - 3y' - 10y = 0$$
. First, $y(0) = 1$, $y'(0) = 0$. Next, $y(0) = 0$, $y'(0) = 1$;
(b) $6y'' - 5y' + y = 0$. First, $y(0) = 4$, $y'(0) = 0$. Next, $y(0) = 0$, $y'(0) = 0$;
(c) $y'' + 3y' = 0$, $y(0) = -2$, $y'(0) = 3$;
(d) $6y'' - 7y' + 2y = 0$, $y(0) = 0$, $y'(0) = 1$;
(e) $2y'' - 3y' + y = 0$, $y(0) = 2$, $y'(0) = \frac{1}{2}$;
(f) $y'' + 4y = 0$, $y(0) = 0$, $y'(0) = 1$;
(g) $y'' + 4y' + 5y = 0$, $y(0) = 1$, $y'(0) = 0$;
(h) $y'' - 2y' + 5y = 0$, $y(\frac{\pi}{2}) = 0$, $y'(\frac{\pi}{2}) = 2$;
(i) $y'' - 2y' + y = 0$, $y(0) = 0$, $y'(0) = 1$;
(j) $y'' - 2y' + y = 0$, $y(0) = 0$, $y'(0) = 1$;
(k) $y'' - 4y' + 4y = 0$, $y(0) = 0$, $y'(0) = 1$;
(l) $y'' - 6y' + 9y = 0$, $y(0) = 0$, $y'(0) = 1$.

16. Consider the equation y'' = y.

- (a) Sketch the solutions c with y(0) = 1 and y'(0) = 0 and s with y(0) = 0 and y'(0) = 1.
- (b) Show that $c^2(t) s^2(t) = 1$ for all t.
- (c) Prove that c' = s and s' = c.

17. Find the Wronskian of the given pair of functions:

- (a) e^{-2t} and te^{-2t} ; (b) e^{-2t} and $\frac{3}{5}e^{-2t}$; (c) $\cos t$ and $\sin t$; (d) $\cosh t$ and $\sinh t$; (e) t^n and t^m ; (f) t^n and mt^n ; (g) t and te^t ; (h) $\cos^2 t$ and $1 + \cos(2t)$.
- 18. If the Wronskian of y_1 and y_2 is $3e^{4t}$ and if $y_1(t) = e^{2t}$, find y_2 .