- 19. Find a solution y_1 of the equation $t^2y'' ty' + y = 0$ by trying $y(t) = t^r$. Then, proceeding as in Example 3.8 (iii) from the lecture notes, let y be the solution of the equation that satisfies y(1) = 3 and y'(1) = -1, find the Wronskian of y_1 and y by applying Abel's theorem, and finally find y by solving a first order linear equation.
- 20. Consider the problem $t^2y'' + 3ty' + y = 0$.
 - (a) Find a solution y_1 of the form $y_1(t) = t^{\alpha}$ for some real number α .
 - (b) To find another solution, try $y_2(t) = v(t)y_1(t)$ for some function v.
 - (c) Make sure that the Wronskian of y_1 and y_2 is not zero (if it is zero, try (a) and (b) again). Find this Wronskian.
 - (d) Now find the solution that satisfies $y(e) = \frac{e+2}{e}$ and $y'(e) = \frac{e-2}{e^2}$.
- 21. Use steps similar as in the previous problem to solve $2t^2y'' + 3ty' y = 0$, y(1) = 3, y'(1) = 0.
- 22. For the following equations, find one particular solution (hint: Try ae^{bt} or $a\sin(bt) + c\cos(dt)$).
 - (a) $y'' 2y' 3y = 3e^{2t};$
 - (b) $y'' + 2y' + 4y = 2e^{-t};$
 - (c) $y'' + 2y' + 5y = 3\sin(2t);$
 - (d) $y'' + y = 3\sin(3t) + 4\cos(3t)$.
- 23. Use the variation of parameters technique to find one particular solution:
 - (a) y'' + y' 2y = 2t;(b) $y'' + 4y = 3\sin(2t);$ (c) $y'' + 2y' + y = 3e^{-t};$ (d) $y'' + y = \tan(t);$ (e) $y'' + 4y' + 4y = t^{-2}e^{-2t}.$