19. Find a solution y_{1} of the equation $t^{2} y^{\prime \prime}-t y^{\prime}+y=0$ by trying $y(t)=t^{r}$. Then, proceeding as in Example 3.8 (iii) from the lecture notes, let y be the solution of the equation that satisfies $y(1)=3$ and $y^{\prime}(1)=-1$, find the Wronskian of y_{1} and y by applying Abel's theorem, and finally find y by solving a first order linear equation.
20. Consider the problem $t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0$.
(a) Find a solution y_{1} of the form $y_{1}(t)=t^{\alpha}$ for some real number α.
(b) To find another solution, try $y_{2}(t)=v(t) y_{1}(t)$ for some function v.
(c) Make sure that the Wronskian of y_{1} and y_{2} is not zero (if it is zero, try (a) and (b) again). Find this Wronskian.
(d) Now find the solution that satisfies $y(e)=\frac{\mathrm{e}+2}{\mathrm{e}}$ and $y^{\prime}(\mathrm{e})=\frac{\mathrm{e}-2}{\mathrm{e}^{2}}$.
21. Use steps similar as in the previous problem to solve $2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0, y(1)=3, y^{\prime}(1)=0$.
22. For the following equations, find one particular solution (hint: Try $a \mathrm{e}^{b t}$ or $a \sin (b t)+c \cos (d t)$).
(a) $y^{\prime \prime}-2 y^{\prime}-3 y=3 \mathrm{e}^{2 t}$;
(b) $y^{\prime \prime}+2 y^{\prime}+4 y=2 \mathrm{e}^{-t}$;
(c) $y^{\prime \prime}+2 y^{\prime}+5 y=3 \sin (2 t)$;
(d) $y^{\prime \prime}+y=3 \sin (3 t)+4 \cos (3 t)$.
23. Use the variation of parameters technique to find one particular solution:
(a) $y^{\prime \prime}+y^{\prime}-2 y=2 t$;
(b) $y^{\prime \prime}+4 y=3 \sin (2 t)$;
(c) $y^{\prime \prime}+2 y^{\prime}+y=3 \mathrm{e}^{-t}$;
(d) $y^{\prime \prime}+y=\tan (t)$;
(e) $y^{\prime \prime}+4 y^{\prime}+4 y=t^{-2} \mathrm{e}^{-2 t}$.
