33. Find the inverse Laplace transforms of
(a) $\frac{e^{-2 s}}{s^{2}}$
(b) $\frac{1}{s^{2}}-e^{-s}\left(\frac{1}{s^{2}}+\frac{2}{s}\right)+e^{-4 s}\left(\frac{4}{s^{3}}+\frac{1}{s}\right)$
(c) $\frac{2 s}{s^{2}+4}-e^{-\frac{\pi s}{2}} \frac{3 s+1}{s^{2}+9}+e^{-\pi s} \frac{s+1}{s^{2}+6 s+10}$
34. Use the shifting theorem to find the Laplace transforms of
(a) $f(t)=u_{1}(t)\left(t^{2}+1\right)$
(b) $f(t)= \begin{cases}2 t+1 & 0 \leq t<2 \\ 3 t & t \geq 2\end{cases}$

$$
\text { (c) } f(t)= \begin{cases}1 & 0 \leq t<2 \\ -2 t+1 & 2 \leq t<3 \\ 3 t & 3 \leq t<5 \\ t-1 & t \geq 5\end{cases}
$$

(d) $f(t)= \begin{cases}\sin t & 0 \leq t<\frac{\pi}{2} \\ \cos t-3 \sin t & \frac{\pi}{2} \leq t<\pi \\ 3 \cos t & t \geq \pi\end{cases}$
35. Use the Laplace transform to solve the following IVPs:
(a) $y^{\prime \prime}+2 y^{\prime}+2 y=1, y(0)=-3, y^{\prime}(0)=1$;
(b) $y^{\prime \prime}-6 y^{\prime}+9 y=t^{2} e^{3 t}, y(0)=2, y^{\prime}(0)=6$;
(c) $y^{\prime \prime}+y=f(t), y(0)=2, y^{\prime}(0)=-1$, where $f(t)= \begin{cases}1 & 0 \leq t<\frac{\pi}{2} \\ -1 & t \geq \frac{\pi}{2} ;\end{cases}$
(d) $y^{\prime \prime}-y=g(t), y(0)=-1, y^{\prime}(0)=2$, where g is "ramp loading" between $(0,0)$ and $(1,1)$;
(e) $y^{\prime \prime}+y=h(t), y(0)=y^{\prime}(0)=0$, where $h(t)= \begin{cases}\cos (2 t) & \frac{\pi}{4} \leq t<\pi \\ 0 & \text { otherwise }\end{cases}$
(f) $y^{\prime \prime}-2 y^{\prime}+y=\delta(t-1), y(0)=0, y^{\prime}(0)=0$;
(g) $y^{\prime \prime}+6 y^{\prime}+5 y=3 e^{-2 t}+2 \delta(t-1), y(0)=-3, y^{\prime}(0)=2$;
(h) $y^{\prime \prime}+y=1+2 \delta(t-\pi)-3 \delta(t-2 \pi), y(0)=-1, y^{\prime}(0)=2$;
(i) $y^{\prime \prime}-2 y^{\prime}+y=k(t), y(0)=a, y^{\prime}(0)=b$;
(j) $y^{\prime \prime}+4 y=k(t), y(0)=a, y^{\prime}(0)=b$;
(k) $y^{\prime \prime}+2 y^{\prime}+2 y=k(t), y(0)=a, y^{\prime}(0)=b$.
36. Show that $f * g=g * f, f * 0=0$, but in general we do not have $f * 1=f$ or $f * f \geq 0$.
37. Exam \#3 will be on Friday, November 7. To get ready for this exam, work through all of the problems 29-36 and in addition through the supplementary homework problems for Chapter 6: $1,2,3,5-15,17,21,26$ of Section 6.1; 1, 3, 5, 7, 8, 11, 15, 19, 25 of Section 6.2; 1, 7, 13 of Section 6.3; 1, 5, 7 of Section 6.4; 1, 4, 9 of Section 6.5; 3, 4, 5, 9, 13, 16, 18 of Section 6.6.

