For the parts with boxes, please fill in the final results in these boxes. For those problems no partial credit is given; it's either true or false. If there is no box, please explain your solution in detail.

1. Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$.

- (a) 2A =
- (b) $B + B^T =$
- (c) AC =
- (d) ACB =
- (e) $B^2 =$

2. Let
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$

- (a) $\det A =$
- (b) trA =
- (c) $A^{-1} =$
- (d) The eigenvalues of A are and
- (e) The eigenvectors of A are $\left(\begin{array}{c} \\ \end{array}\right)$ and $\left(\begin{array}{c} \\ \end{array}\right)$
- (f) The eigenvalues of A^{-1} are and
- (g) The eigenvalues of $2A^2 + A 3I$ are and

3. Suppose $r_0 = r_1 = 1$ and $r_{n+1} = r_n + 2r_{n-1}$ for each $n \in \mathbb{N}$. Use matrix powers to find a formula for r_n for each $n \in \mathbb{N}$.

4. Fill in the boxes:

IVP	integrating factor	solution $y(t)$
$y' = 5y - 1, \ y(0) = 2$		
y' = -y + 4, y(1) = -1		
$y' - y = 2te^{2t}, y(0) = 1$		
$y' - 2y = e^{2t}, y(0) = 2$		

5. Solve the problem $y' = \frac{t^2}{y}$, y(0) = -1 by separating the variables. Give the solution explicitly.

6.	Let $N(t)$ be the number of individuals in a certain population at time t . If we assume that N
	increases proportionally to the number of individuals currently present, give a differential equation
	for N : For an initial condition, assume that at time 0 the number of individu-
	als is N_0 . The solution is $N(t) = 1$. If N_0 , then the solution is increasing with
	$\lim_{t\to\infty} N(t) =$; If N_0 , then the solution is decreasing with $\lim_{t\to\infty} N(t) =$
	If N_0 , then the solution is constant with $\lim_{t\to\infty} N(t) = $. Now we assume that N
	changes proportionally to the product of the number of individuals currently present and $(1 - \frac{N(t)}{K})$,
	where K is a constant. The corresponding ODE is
	the technique . There are two constant solutions: $N_1(t) \equiv$ and
	$N_2(t) \equiv $

7. Assume $y:(0,\infty)\to (0,\infty)$ is continuous with $\int_1^x \frac{y(t)}{t} dt = y(x) - \frac{x^2+1}{2}$ for all x>0. Find y.

8. Fill in the boxes (y_1 and y_2 should be linearly independent solutions):

equation	characteristic equation	zeros	$y_1(t)$	$y_2(t)$
y'' - 3y' - 10y = 0				
y'' + 4y = 0				
y'' - 2y' + y = 0				
y'' - 2y' + 5y = 0				
"				
y'' + 4y' + 5y = 0				
-// 2.5-/ L O				
y'' - 2.5y' + y = 0				

9. Use the variation of parameters technique to find one particular solution of y'' + y' - 2y = 2t.

10. Introduce $z = {x \choose y}$ and rewrite the equation as a system z' = Az. Find two linearly independent solutions z_1 and z_2 :

equation	matrix A	eigenvalues of A	$z_1(t)$	$z_2(t)$
$x' = -4x + 2y, \ y' = -2.5x + 2y$				
$x' = 3x - y, \ y' = 9x - 3y$				
$x' = 5x + y, \ y' = -2x + 3y$				

11. Use Laplace transforms to solve the IVP y' + 2y = t, y(0) = -1.