Exam #2, Math 2051, Dr. M. Bohner

Name: Solution Key

Mar 26, 2002.

Part A: Fill in only the boxes and do your work on a separate sheet.

1. Let X = {x1,29, 23,24}, Y = {v1,Y2,Y3,Ya}, Z = {21, 29,23}, and define f : X - Y, g: Y = Z,

h:Z — X by f(iUl) =Y, f($2) = Y3, f($3) = Ya, f($4) = Y2, 9(:1/1) = z1, 9(y2) = z1, g(yg) = Z3,

g(y4) = %2, h(zl) = T, h(ZQ) = Zo, and h(Z3) = x4.

(a) (hogo f)(a)
(b) (hogo f)(ws)
(©) (hogo f)(zs)
() (hogo f)(a)

(€) 9({y1,us}) | = {21, 23}

) f{yuys})
(g) ({3, 24})

= {x1,x2}

= {z3}

(h) Is f one-to-one, onto, or invertible? (Underline whatever applies.)

(i) Is g one-to-one, onto, or invertible? (Underline whatever applies.)

(j) Is h one-to-one, onto, or invertible? (Underline whatever applies.)

2. Define a relation R on the set {1,2,3,4,5} by (z,y) € R if z + y < 6. Underline whatever applies:

Is R reflexive, symmetric, antisymmetric, transitive, an equivalence relation, a partial order?

Part B: For the remaining problems, show your work clearly, explaining each step of the proofs. Use

only the space allocated for each problem (use separate sheets of paper for additional work).
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(b) Is a increasing or decreasing? (Prove your claim!)

Let n € N. Then
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So a is decreasing.

(¢) Is a bounded above or bounded below? (Prove your claim!)

Let n € N. Then

and
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bl

so a is bounded above by 1 and bounded below by 0.



4. Let fi =1, fo=2,and f, = fu_1 + fu_g for n > 2.

(a) Show f, < 2" for all n € N.

First, f, < 2" is clearly true for n = 1 and n = 2. Now let n € N with n > 2 and

assume that f, < 2* is true for all 1 < k <n. Then
frst = fat fao1 <27+ 271 =2"(140.5) < 2" -2 = 2"

so the statement is true for n + 1. By the PMI, it is now true for all n € N.
(b) Show f, > ()" for all n € N\ {1,2,3,4}.

First, f, > (3/2)" is clearly true for n =5 and n = 6. Now let n € N with n > 6 and

assume that f;, > (3/2)" is true for all 5 < k < n. Then

frrr = fatfar > (3/2)"+(3/2)"7F = (3/2)"(142/3) = (3/2)™(5/3) < (3/2)™(3/2) = (3/2)""",

so the statement is true for n + 1. By the PMI, it is now true for all n € N with

n > b.



5. Define a relation on Z by m ~ n iff 7 divides m — n. Show that ~ is an equivalence relation. Find

all equivalence classes.

(a) Let m € Z. Then m —m =0 and 7|0 so that m ~ m. Hence ~ is reflexive.

(b) Let m,n € Z with m ~ n. Hence 7|(m —n), i.e., m —n = 7k for some k € Z. Therefore

n—m=—(m-—n)=—-Tk="7-(—k),

so 7|(n —m) and n ~ m. Hence ~ is symmetric.

(c) Let m,n,p € Z with m ~ n and n ~ p, i.e., 7|(m — n) and 7|(n — p), i.e., m —n =Tk

and n — p = 7l for some k,l € Z. Therefore

m—p=(m—-n)+(n—p)=Tk+7="1(k+1),

so 7|(m — p), i.e., m ~ p. Hence ~ is transitive.

By (a), (b), and (c), ~ is reflexive, symmetric, and transitive, hence an equivalence

relation. There are seven equivalence classes

m|={Tk+m: keZ} for 0<m<E6.



