56. Find the Fourier coefficients of f on [-l, l] if f is

- (a) even;
- (b) odd.
- 57. Find the Fourier coefficients of f on $[-\pi, \pi]$ for
 - (a) f(x) = x;
 - (b) f(x) = |x|;
 - (c) $f(x) = |\sin x|$;
 - (d) $f(x) = x^2$:
 - (e) $f(x) = \cosh(\alpha x), \ \alpha \neq 0.$
- 58. For the set of real-valued polynomials on [-1,1], show that p defined by p(x) = x is orthogonal to every constant function. Next, find a quadratic polynomial that is orthogonal to both p and the constant functions. Finally, find a cubic polynomial that is orthogonal to all quadratic polynomials. Hence construct an orthonormal set with three vectors.
- 59. Find $\sum_{k=1}^{n} \sin(k\theta)$.
- 60. For |a| < 1, find
 - (a) $\sum_{n=0}^{\infty} a^n \cos(n\theta)$;
 - (b) $\sum_{n=1}^{\infty} a^n \sin(n\theta)$.
- 61. Let $e_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx}$, where $x \in (-\pi, \pi)$. Let f be continuous and 2π -periodic on \mathbb{R} . Put $f_m = \sum_{n=-m}^m \langle f, e_n \rangle e_n$ and $F_m = \frac{1}{m+1} \sum_{k=0}^m f_k$. (a) Establish the formula $F_m(y) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) K_m(y-x) dx$, where
 - $K_m(\theta) = \frac{1}{m+1} \sum_{k=0}^m \sum_{n=-k}^k e^{in\theta}$ is the so-called Fejér kernel.
 - (b) Show that $K_m(\theta) = \frac{1}{m+1} \frac{\sin^2 \frac{(m+1)\theta}{2}}{\sin^2 \frac{\theta}{2}}$ if $\theta \neq 2\pi n$ for some $n \in \mathbb{Z}$.
 - (c) Prove: $F_m(y) f(y) = \frac{1}{2\pi} \int_{y-\pi}^{y+\pi} [f(x) f(y)] K_m(y-x) dx$.
 - (d) Draw the graph of K_m for $m \in \{2, 5, 8\}$.