- 11. Find the solution of $u_x u_t + 2u = 1$ that satisfies $u(x, 0) = x^2$.
- 12. Consider the PDE $u_x + u_t = u + e^{x-t}$.
 - (a) Using the geometric method, find the general solution.
 - (b) Find the solution u with u(x,0) = g(x), where g is an arbitrary differentiable function.
 - (c) Find the solution u with u(x,1)=g(x), where g is an arbitrary differentiable function.
- 13. Find the solution of $u_x + u_t + u = e^{x+2t}$ that satisfies u(x,0) = 0.
- 14. Find the solution of $2u_x + 3u_t = 4u + x$ that satisfies $u(x,0) = 9x^2$.
- 15. Find the general solutions of the following equations:
 - (a) $xu_x + tu_t = 0$;
 - (b) $xu_x + tu_t = t$;
 - (c) $xu_x + tu_t = t^2 + x^3$;
 - (d) $(1+x^2)u_x + u_t = 0$.
- 16. Find the solution of $\sqrt{1-x^2}u_x + u_t = 0$ that satisfies u(0,t) = t.
- 17. Find the solution of $tu_x + xu_t = 0$ that satisfies $u(0,t) = e^{-t^2}$.
- 18. Find the solution of $xu_t = tu_x$ that satisfies u(x,0) = 3x.
- 19. Find the solution of $(t+x)u_x + (t-x)u_t = 0$ that satisfies $u(\cos(s), \sin(s)) = 1$ for all $s \in [0, 2\pi]$.
- 20. Find the general solution of $xu_x + u_y + (1+z^2)u_z = x + y$.