- 36. Let u be a solution of the diffusion equation $u_t = k u_{xx}$. Show the following:
 - (a) Let $y \in \mathbb{R}$. Then v with v(x,t) = u(x-y,t) solves the diffusion equation.
 - (b) u_x , u_t , and u_{xx} solve the diffusion equation (provided u is often enough differentiable).
 - (c) Let a > 0. Then v with $v(x,t) = u(x\sqrt{a}, at)$ solves the diffusion equation.
- 37. Let $u(x,t) = 1 x^2 2kt$. Show that u solves the diffusion equation and find the locations of its extreme values in $\{(x,t): 0 \le x \le 1, 0 \le t \le T\}$.
- 38. Let $u(x,t) = -2xt x^2$. Show that u solves the equation $u_t = xu_{xx}$ and find the locations of its extreme values in $\{(x,t): -2 \le x \le 2, 0 \le t \le 1\}$. Where exactly does the proof of the maximum principle from Theorem 2.3 break down?
- 39. Use the energy method (as is done in the book on page 43) to show that there is at most one solution of the Dirichlet problem for the diffusion equation.
- 40. Solve the diffusion equation (on the whole line) with the following initial conditions:
 - (a) $\phi(x) = \alpha$ for all $x \in \mathbb{R}$ (where $\alpha \in \mathbb{R}$);
 - (b) $\phi(x) = 1$ if |x| < l and zero otherwise (where l > 0);
 - (c) $\phi(x) = 1$ for positive x and $\phi(x) = 3$ for negative x;
 - (d) $\phi(x) = e^{-x}$ for positive x and $\phi(x) = 0$ for negative x.
- 41. Let u be a solution of the diffusion equation together with $u(x,0) = \phi(x)$. Prove:
 - (a) If ϕ is odd, then u is odd;
 - (b) If ϕ is even, then u is even.
- 42. Solve the IVP $u_t ku_{xx} + bu = 0$, $u(x, 0) = \phi(x)$ (where b > 0) by performing a change of variables $u(x, t) = e^{-bt}v(x, t)$.
- 43. Solve the IVP $u_t ku_{xx} + bt^2u = 0$, $u(x, 0) = \phi(x)$ (where b > 0) by performing a change of variables $u(x, t) = e^{-bt^3/3}v(x, t)$.
- 44. Solve the IVP $u_t ku_{xx} + bu_x = 0$, $u(x, 0) = \phi(x)$ (where b > 0) by substituting y = x bt.