45. Read Chapter 3 of the book. Work on at least two problems from different sections.
46. Find the solution of the wave equation with Dirichlet conditions (see Theorem 4.1) and
(a) $\phi(x)=3 \sin \frac{\pi x}{l}, \psi(x)=0$;
(b) $\phi(x)=3 \sin \frac{\pi x}{l}-2 \sin \frac{3 \pi x}{l}, \psi(x)=4 \sin \frac{\pi x}{l}+2 \sin \frac{4 \pi x}{l}$.
47. Find the solution of the diffusion equation with Dirichlet conditions (see Theorem 4.2) and
(a) $\phi(x)=3 \sin \frac{\pi x}{l}$;
(b) $\phi(x)=3 \sin \frac{\pi x}{l}-2 \sin \frac{3 \pi x}{l}$.
48. Consider a metal rod $(0<x<l)$, insulated along its sides but not at its ends, which is initially at temperature one everywhere. Suddenly both ends are plunged into a bath of temperature zero. Write the differential equation, boundary conditions, and initial conditions. Write the formula for the temperature $u(x, t)$ at later times. In this problem, you can use the infinite series expansion $\sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin \frac{(2 n-1) \pi x}{l}=\frac{\pi}{4}$.
49. Find all eigenvalues and eigenfunctions of $f^{\prime \prime}+\lambda f=0, f(0)=f(\pi)=0$. How many zeros inside the interval $(0, \pi)$ does the nth eigenfunction of the problem have?
50. Find all eigenvalues and eigenfunctions of $f^{\prime \prime}+\lambda f=0, f(-\pi)=f(\pi), f^{\prime}(-\pi)=f^{\prime}(\pi)$. Also show that the eigenfunctions are orthogonal in the sense that $\int_{-\pi}^{\pi} e_{1}(x) e_{2}(x) \mathrm{d} x=0$ whenever e_{1} and e_{2} are eigenfunctions corresponding to two different eigenvalues.
51. Separate the variables for the equation $t u_{t}=u_{x x}+2 u$ with $u(0, t)=u(\pi, t)=0$. Show that the solution of this problem satisfying in addition $u(x, 0)=0$ is not unique.
52. Use the method of separation of variables and discuss the resulting eigenvalue problems for each of the following:
(a) $u_{x x}+u_{t t}=0(0<x<l, t>0), u(0, t)=u(l, t)=0$;
(b) $u_{x x}+u_{t t}=0(0<x<l, t>0), u_{x}(0, t)=u_{x}(l, t)=0$;
(c) $u_{t t}=c^{2} u_{x x}(0<x<l), u(0, t)=0, u_{t t}(l, t)+k u_{x}(l, t)=0$;
(d) $u_{t t}+a^{2} u_{x x x x}=0(0<x<l, t>0), u(0, t)=u(l, t)=u_{x x}(0, t)=u_{x x}(l, t)=0$.
53. Show that $\cos (n x)$ and $\sin (m x)$ are orthogonal.
