Section 4.10

Spring-Mass Systems Forced Mechanical Vibrations

Recall: Spring-Mass Systems

A standard spring-mass system can be modeled using the differential equation

$$my'' + \gamma y' + ky = F(t)$$

where m is the mass of the object, γ is the damping constant, kis the spring constant, and F(t) is the time-dependent external force acting on the system.

Goal for today: Consider what happens when $F(t) \neq 0$.

Forced Mechanical Vibrations

If $F(t) \neq 0$, the general solution of

$$my'' + \gamma y' + ky = F(t)$$

will be of the form

$$y(t) = y_h(t) + y_p(t)$$

 $y_h(t)$ is the transient part of the solution.

 $y_p(t)$ is the steady-state solution.

When $\gamma \neq 0$, note that $y_h(t) \rightarrow 0$ as $t \rightarrow \infty$.

Thus, $y(t) \rightarrow y_p(t)$ as $t \rightarrow \infty$.

Recall: Free Undamped Motion

With free undamped motion, we are solving the equation my''+ky=0

which has general solution

$$y = C_1 \cos\left(\sqrt{\frac{k}{m}}t\right) + C_2 \sin\left(\sqrt{\frac{k}{m}}t\right)$$

Smaller values of $\sqrt{\frac{k}{m}}$ (typically from larger masses) yield slower vibrations.

Larger values of $\sqrt{\frac{k}{m}}$ (typically from stiffer springs) yield faster vibrations.

Forced Undamped Motion

With forced undamped motion, we are solving the equation my'' + ky = F(t)

The transient part of the solution is

$$y_h = C_1 \cos\left(\sqrt{\frac{k}{m}}t\right) + C_2 \sin\left(\sqrt{\frac{k}{m}}t\right)$$

We often consider oscillating forces of the form $F(t) = F_0 \cos(\omega t)$

where F_0 and ω are constants.

Forced Undamped Motion

$$my'' + ky = F_0 \cos(\omega t)$$

$$y_h = C_1 \cos\left(\sqrt{\frac{k}{m}}t\right) + C_2 \sin\left(\sqrt{\frac{k}{m}}t\right)$$

If $\omega = \sqrt{\frac{k}{m}}$, meaning the frequency of forcing matches the frequency of the unforced system, we get the steady-state solution $y_p=\frac{F_0}{2m\omega}t\sin\left(\sqrt{\frac{k}{m}}t\right)$

$$y_p = \frac{F_0}{2m\omega}t\sin\left(\sqrt{\frac{k}{m}}t\right)$$

which approaches ∞ as $t \to \infty$.

This is called resonance. Resonance is bad!

Example 1

An object that weighs 8 pounds stretches a spring 6 inches. The undamped system is acted upon by an external force of $8\cos(\omega t)$ pounds where ω is a positive constant. The object is released from static equilibrium. Let y(t) be the displacement from static equilibrium at any positive time t seconds.

- a) Set up an initial value problem.
- b) Find the transient part $y_h(t)$ of the solution.
- c) Find the steady-state solution $y_p(t)$ and solution y(t) when $\omega \neq 8$ and graph y(t) provided $\omega=7.8$

Example 1

An object that weighs 8 pounds stretches a spring 6 inches. The undamped system is acted upon by an external force of $8\cos(\omega t)$ pounds where ω is a positive constant. The object is released from static equilibrium. Let y(t) be the displacement from static equilibrium at any positive time t seconds.

d) Find the steady-state solution $y_p(t)$ and solution y(t) when $\omega=8$ and graph y(t).

Forced Damped Motion

With forced damped motion, we are solving the equation $my'' + \gamma y' + ky = F(t)$

The transient part of the solution may or may not involve oscillation, depending on the roots of the auxiliary equation.

Resonance can still occur even with damping!