| S | MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY | Founded 1870   Rolla, Missouri |
|---|-----------------------------------------------|--------------------------------|
|   |                                               |                                |
|   |                                               |                                |
|   | Section 4.2                                   |                                |
|   | Homogeneous Linear Equations                  |                                |
|   |                                               |                                |
|   |                                               |                                |

### Recall: First-Order Linear Equations

A first-order linear ODE is an ODE which can be written in the form

$$a_1(t)y'(t) + a_0(t)y(t) = f(t)$$

# Second-Order Linear Equations

A second-order linear ODE is an ODE which can be written in the form  $% \left( 1\right) =\left( 1\right) \left( 1\right$ 

$$a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = f(t)$$

If f(t) = 0, the equation is called homogeneous.



Solve the DE.

$$y'' - 4y = 0$$

## Homogeneous Equations with Constant Coefficients

To solve an equation of the form

$$ay'' + by' + cy = 0$$

where a, b, and c are constants, begin by assuming that a solution of the form  $y = e^{rt}$  exists.

Differentiating, we get

$$y' = re^{rt}$$
 and  $y'' = r^2e^{rt}$ 

Substituting into the original DE, we obtain  $ar^2e^{rt}+bre^{rt}+ce^{rt}=0 \label{eq:equation}$ 

$$ar^2e^{rt} + hre^{rt} + ce^{rt} = 0$$

### Homogeneous Equations with Constant Coefficients

$$ay'' + by' + cy = 0$$
 Assume  $y = e^{rt}$ 

$$ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$$

Factoring yields

$$e^{rt}(ar^2 + br + c) = 0$$

and since the exponential factor is always nonzero, we obtain  $ar^2 + br + c = 0$ 

which is called the auxiliary (or characteristic) equation of the DE

## The Auxiliary Equation

$$ay'' + by' + cy = 0$$

$$\mathsf{Assume}\ y = e^{rt}$$

$$ar^2 + br + c = 0$$

When solving the auxiliary equation, we will encounter one of these three cases:

- I. Two real, distinct roots
- II. One real, repeated root
- III. Two complex roots (which occur in a conjugate pair)

### Example 2

Find the general solution of the differential equation  $y''+3y'+2y=0 \label{eq:continuous}$ 

# The Superposition Principle

If  $y_1$  and  $y_2$  are two solutions of a linear homogeneous differential equation, then the linear combination

$$y = C_1 y_1 + C_2 y_2$$

is also a solution for any values of the constants  $\mathcal{C}_1$  and  $\mathcal{C}_2$ .

# Example 3

Find the solution of the initial value problem

$$y'' + 8y' - 9y = 0, y(1) = 1, y'(1) = 0$$

Then, describe the behavior of the solution as  $t \to \infty$ .

# The Determinant of a $2 \times 2$ Matrix

Let 
$$A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 . The determinant of  $A$  is 
$$\det\!A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}=ad-bc$$

# Example 4

Compute the determinant.

 $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$ 

| _ |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|
| т | h | Δ | 0 | r | Δ | n | ŕ |

The system of equations

$$ax + by = f$$
$$cx + dy = g$$

will have a unique solution when

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$$

This is equivalent to saying the coefficient matrix  $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$  is invertible.

#### Theorem

The initial value problem

$$ay'' + by' + cy = 0, y(t_0) = k_0, y'(t_0) = k_1$$

is guaranteed to have a unique solution for all t in  $(-\infty, \infty)$ .

### The Wronskian

The Wronskian of two differentiable functions  $\boldsymbol{f}$  and  $\boldsymbol{g}$  is the function

$$W[f,g](t) = \begin{vmatrix} f(t) & g(t) \\ f'(t) & g'(t) \end{vmatrix}$$

If  $W[f,g](t) \neq 0$ , then the functions f and g are linearly independent.

### Example 3 (revisited)

When solving the initial value problem

$$y'' + 8y' - 9y = 0, y(1) = 1, y'(1) = 0$$

we obtained two solutions of the differential equation:

$$y_1 = e^{-9t}, y_2 = e^t$$

Calculate the Wronskian of these two solutions.

Are they linearly independent?

#### Theorem

The most general solution of the linear homogeneous DE  $a_2(t)y''(t)+a_1(t)y'(t)+a_0(t)y(t)=0$ 

on an interval  $\boldsymbol{I}$  is

$$y(t) = \mathcal{C}_1 y_1(t) + \mathcal{C}_2 y_2(t)$$

where  $y_1$  and  $y_2$  are two linearly independent solutions of the equation on I.

#### Repeated Real Roots

Consider the DE ay'' + by' + cy = 0.

When solving the auxiliary equation  $ar^2+br+c=0$  using the quadratic formula  $r=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ , if  $b^2-4ac=0$  we obtain only one (repeated) real root  $r_1=-\frac{b}{2a}$ .

Thus,  $y_1 = e^{r_1 t}$  is one solution of the DE.

It can be shown that  $y_2 = te^{r_1t}$  is also a solution.

