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Section 4.9 with Section 4.1

Spring-Mass Systems

Free Mechanical Vibrations

Spring-Mass Systems
Goal:
Use second-order linear differential equations to model
spring-mass systems.

Basic Problem:
An object of mass 𝑚 is attached to a vertical spring hanging from 
a rigid support.  If we displace the object from its equilibrium 
position and/or push the object upwards or downwards, find the 
equation governing the vertical displacement 𝑦 𝑡  of the object 
from its equilibrium position at time 𝑡.

Spring-Mass Systems

Spring is at rest Static Equilibrium
Snapshot of 

system in motion
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Newton’s Second Law
The sum of forces acting on an object equals the mass of the 
object times acceleration.

Symbolically,

෍ 𝐅 = 𝑚𝐚

Assumptions and Conventions
1. All motion of the object attached to the spring occurs along 

either a vertical or horizontal line.  There is no swinging or 
twisting.

2. When working with vertical systems, the downward direction 
is positive.

3. We define zero as the position of the object in static 
equilibrium.

Assumptions and Conventions
4. The only forces acting on the object are:

– The force due to gravity

– The spring force

– The damping force exerted by the surrounding medium as the 
object moves through it (e.g. air resistance or friction), unless we 
assume there is no damping

– One or more time-dependent external forces, if such forces exist
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Assumptions and Conventions
5. The force due to gravity is the positive force

𝐹grav = 𝑚𝑔

6. The spring force is due to Hooke’s Law:
The force exerted by the spring is proportional to its stretch 
(or compression) from its natural resting state, and it acts in 
the opposite direction from the stretch (or compression).
Thus

𝐹spring = −𝑘 𝑦0 + 𝑦

where 𝑘 > 0.

Assumptions and Conventions
7. The damping force is proportional to velocity and opposes the 

direction of motion.  Thus,
𝐹damping = −𝛾𝑦′

where 𝛾 > 0.

8. The external force, if any, is time dependent.  Thus,
𝐹external = 𝐹 𝑡

Spring-Mass Systems
If we combine our assumptions and conventions with Newton’s 
Second Law, we get

𝑚𝑦″ = 𝑚𝑔 − 𝑘 𝑦0 + 𝑦 − 𝛾𝑦′ + 𝐹 𝑡

Note that if the object is resting at static equilibrium, there is no 
velocity, acceleration, or external force.  Thus,

𝑚 0 = 𝑚𝑔 − 𝑘 𝑦0 + 0 − 𝛾 0 + 0
0 = 𝑚𝑔 − 𝑘𝑦0

𝑚𝑔 = 𝑘𝑦0
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Spring-Mass Systems
If we combine our assumptions and conventions with Newton’s 
Second Law, we get

𝑚𝑦″ = 𝑚𝑔 − 𝑘 𝑦0 + 𝑦 − 𝛾𝑦′ + 𝐹 𝑡

𝑚𝑦″ = 𝑚𝑔 − 𝑘𝑦0 − 𝑘𝑦 − 𝛾𝑦′ + 𝐹 𝑡

𝑚𝑦″ = −𝑘𝑦 − 𝛾𝑦′ + 𝐹 𝑡

𝑚𝑦″ + 𝛾𝑦′ + 𝑘𝑦 = 𝐹 𝑡

0

Example 1

A 5 lb mass stretches a spring by 
1

3
 ft.  Find the spring constant 𝑘.

Units for the Spring Constant 𝑘

Standard: 
lb

ft

Metric:  
N

m
   Recall:  1 N = 1

kg∙m

s2

If we work with grams and centimeters, 1 dyn = 1
g∙cm

s2  and we 

would get a spring constant in 
dyn

cm
.

Note:  1 N = 105 dyn
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Example 2
A mass of 100 g stretches a spring 5 cm.  If the mass is set in 
motion from its equilibrium position with a downward velocity of 
10 cm/s and there is no damping, determine the position 𝑦 𝑡  of 
the mass at any time 𝑡.

Free Undamped Motion
With free undamped motion, we are solving the equation

𝑚𝑦″ + 𝑘𝑦 = 0
which has general solution

𝑦 = 𝐶1 cos
𝑘

𝑚
𝑡 + 𝐶2 sin

𝑘

𝑚
𝑡

Smaller values of 
𝑘

𝑚
 (typically from larger masses) yield slower vibrations.

Larger values of 
𝑘

𝑚
 (typically from stiffer springs) yield faster vibrations.

Free Damped Motion
With free damped motion, we are solving the equation

𝑚𝑦″ + 𝛾𝑦′ + 𝑘𝑦 = 0, 𝑚, 𝛾, 𝑘 > 0

If we assume 𝑦 = 𝑒𝑟𝑡, we find

𝑟 =
−𝛾 ± 𝛾2 − 4𝑚𝑘

2𝑚
Three cases:

I. Two distinct real roots

II. One real, repeated root

III. Two complex roots (which occur in a conjugate pair)
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Free Damped Motion:  Two Distinct Real Roots
If 𝛾2 − 4𝑚𝑘 > 0, we get two real roots 𝑟1 and 𝑟2.

This yields the solution
𝑦 𝑡 = 𝐶1𝑒𝑟1𝑡 + 𝐶2𝑒𝑟2𝑡

and we note that 𝑦 𝑡  does not oscillate.

This is called overdamped motion.

Since 𝑟1 and 𝑟2 are both negative, 𝑦 𝑡 → 0 as 𝑡 → ∞.

Free Damped Motion:  One Real Repeated Root
If 𝛾2 − 4𝑚𝑘 = 0, we get the repeated real root 𝑟1 =

−𝛾

2𝑚
< 0.

This yields the solution
𝑦 𝑡 = 𝐶1𝑒𝑟1𝑡 + 𝐶2𝑡𝑒𝑟1𝑡

and we note that 𝑦 𝑡  does not oscillate.

This is called critically damped motion.

Since 𝑟1 is negative, 𝑦 𝑡 → 0 as 𝑡 → ∞.

Free Damped Motion:  Two Complex Roots
If 𝛾2 − 4𝑚𝑘 < 0, we get the complex roots 𝑟 = 𝛼 ± 𝛽𝑖.

This yields the solution
𝑦 𝑡 = 𝐶1𝑒𝛼𝑡 cos 𝛽𝑡 + 𝐶2𝑒𝛼𝑡 sin 𝛽𝑡

and we note that 𝑦 𝑡  oscillates.

This is called underdamped motion.

If damping is very small 𝛾 ≈ 0 , this solution is very similar to 
the solution of an undamped 𝛾 = 0  system.
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Free Damped Motion:  Two Complex Roots
If 𝛾2 − 4𝑚𝑘 < 0, we get the complex roots 𝑟 = 𝛼 ± 𝛽𝑖.

𝑦 𝑡 = 𝐶1𝑒𝛼𝑡 cos 𝛽𝑡 + 𝐶2𝑒𝛼𝑡 sin 𝛽𝑡

The quasiperiod of the motion is

𝑃 =
2𝜋

𝛽

and the quasifrequency of the motion is 
1

𝑃

Quasiperiod and Quasifrequency

𝐴𝑒𝛼𝑡
𝑦 𝑦

𝑦 𝑡 = 𝐶1𝑒𝛼𝑡 cos 𝛽𝑡 + 𝐶2𝑒𝛼𝑡 sin 𝛽𝑡

Example 3
A mass weighing 16 pounds stretches a spring 3 inches.  The 
mass is attached to a viscous damper with a damping constant of 
2 pound-seconds per foot.  If the mass is set in motion from its 
equilibrium position with a downward velocity of 3 inches per 
second, find and plot its position 𝑦 𝑡 .  Determine when the 
mass first returns to its equilibrium position.  Finally, determine 
the quasiperiod.



8

Example 4

A 
1

4
 kg mass is attached to a spring with stiffness 8 N/m.

The damping constant for the system is 
1

4
 N-sec/m.

If the mass is moved 1 m to the left of equilibrium and released, 
what is the maximum displacement to the right that it will attain?

Example 4

         
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𝑥 𝑡 = −𝑒−
1
2𝑡 cos
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2
𝑡 −

1
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2𝑡 sin

127
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𝑡
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